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ABSTRACT

MSc THESIS

MULTIFEEDBACK-LAYER NEURAL NETWORK CONTROLLER
DESIGN USING PARTICLE SWARM OPTIMIZATION ALGORITHM
FOR HARD DISK DRIVE CONTROL

inayet Ozge AKSU

CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES
DEPARTMENT OF COMPUTER ENGINEERING

Supervisor : Assoc. Prof. Dr. Ramazan COBAN
Y ear: 2013, Pages: 53
Jury : Assoc. Prof. Dr. Ramazan COBAN
: Prof. Dr. ilyas EKER
: Assoc. Prof. Dr. Zekeriya TUFEK CI

In this paper, the weights of the Multifeedback-Layer Neural Network
(MFLNN) which has recently proposed are trained by the Particle Swarm
Optimization (PSO) algorithm. To improve training capability of the PSO, it is
enhanced by some modifications. This method (MFLNN-PSO) is applied to two
different problems to prove accomplishment of the method. Then, the closed loop
identification of the reader head position of a disk drive system is proposed by using
the MFLNN-PSO algorithm. Finaly, a new type of neuro controller is put forward
by using the MFLNN-PSO. Initially, this neuro controller is applied to two different
kinds of dynamic systems. Later, it is applied to a hard disk drive system as a redl
physica example. Simulation results show that the MFLNN-PSO controller is
effective and efficient on the control of dynamic systems and hard disk drive system.

Keywords: Hard Disk Driver, Identification, Multifeedback-Layer Neural Network,
Nonlinear Controller, Particle Swarm Optimization.



Oz

YUKSEK LISANSTEZi

HARD DISK SURUCU KONTROLU ICIN PARCACIK SURUSU
OPTIMIZASYON ALGORITMASI KULLANILARAK COK KATMANLI-
GERI BESLEMELI SINIR AGI YAPISINDA KONTROLOR TASARIM|

inayet Ozge AKSU

CUKUROVA UNIVERSITESI
FEN BIiLiIMLERI ENSTIiTUSU
BiLGiISAYAR MUHENDISLiGi BOLUMU

Damsman : Dog. Dr. Ramazan COBAN
Yil: 2013, Sayfa: 53
Juri : Dog. Dr. Ramazan COBAN
: Prof. Dr. ilyas EKER
: Dog. Dr. Zekeriya TUFEK CI

Bu calismada, ilk olarak, yakin zamanda gelistirilen Cok Katmanli-Geri
Beslemeli Sinir Aginin (MFLNN) agirliklar:, Pargacik Sirt Optimizasyonu (PSO)
algoritmast ile egitilmistir. PSO algoritmasinin egitme yetenegini gelistirmek icin,
algoritmada bazi iyilestirmeler yapilmistir. Yontemin basarisim gostermek icin bu
metot (MFLNN-PSO) iki farkl1 probleme uygulanmistir. Daha sonra, MFLNN-PSO
algoritmast ile bir disk siricisinin okuma kafasinin  konumlanmast igin
tamlanmistir. Son olarak, MFLNN-PSO kullamilarak yeni bir neuro kontrolor
tasarlanmustir. Bu neuro kontrolor iki farkli dinamik sisteme ve ayrica gergek bir
fiziksel Ornek olarak hard disk sUrict sistemine uygulanmustir. Similasyon
sonuglary, MFLNN-PSO kontrolorin dinamik sistemler ve hard disk sirtci
sisteminin kontrol U tzerinde etkin ve etkili oldugunu gostermektedir.

Anahtar Kelimeler: Hard Disk Sortcisl, Tammlama, Cok Katmanli-Geri
Beslemeli Sinir Agi, Nonlineer Kontrol6r, Pargacik Sirl
Optimizasyonu.
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1. INTRODUCTION

Over the last few decades, neural approaches have been preffered to identify
and control the nonlinear systems in engineering and industrial fields. It is seen that
desired performances are obtained in different systems which are controlled by
neural network controllersin Beyhan and Alc (2010); Kim and Lewis (2000); Lewis
et a. (1996); San et a. (2011). In Lin et a. (2004) and Lin and Wai (2003), a
recurrent fuzzy neural network is used for control of the linear synchronous motor
drive system. Besides, recurrent fuzzy neural networks are also succesfully used in
controlling and identification of the dynamic systems (Lee and Teng, 2000;
Mastorocostas and Theocharis, 2002). Some types of recurrent neural networks are
applied to the nonlinear dynamic systems for controlling or identification in Chow
and Fang (1998); Coban (2013) and Kim et al. (1997). Different computational
optimization algorithms can be used in neural network controllers. The genetic
algorithms among them are one of the methods used to building the controller
structures. In the work of Juang (2002), a TSK-type recurrent fuzzy network with the
genetic learning is applied to dynamic system control. The Particle Swarm
Optimization (PSO) algorithm is aso preffered for building the contol structure. In
Dong et a. (2011), the PSO Fuzzy Neural Network Control (PSO-FNNC) is used for
the ball and plate system. In that study, the PSO algorithm is used for the fuzzy
neural network optimization. In Sheikhan et al. (2012), neural based controller is
used for adaptive queue control in transmission control protocol (TCP)
communication. In the study, the PSO algorithm is used for opitimization of the
weights of the controller.

Hard disk drivers (HDDs) are the data storage medium and used in many
areas, not only in computer systems but also in mobile communication industries as
digital data storage. In recent years, the track density has been increased in the disk
to develop the storage capacity. Thus, reader head must be correctly located on
desired track and moved from one track to another. Because of this reason, position

of the reader head comes into prominence.
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Especially in mobile environment, positioning the reader/writer head is
crucial and critical problem because of external shocks and vibrations. This situation
reduces the performance of HDDs. Additionaly, higher track density in hard disk
drives necessitates the higher accuracy of track position in the mobile environment.
The reducing positioning error of reader/writer head is significant issue in HDD
design (Ren et al., 2009). For these reasons, a high performance control system is
needed to reach the data effectively and precisely. Some methods are proposed in
Atsumi and Messner (2013), Chen et al. (2006), and Pérez-Arancibia, Tsao, and
Gibson (2010) to enhance the hard disk performance.

Neural networks are models that their neurons are connected to each other as
a human brain. Since most physical systems are complex and non-linear, they may
not be modeled by using conventional methods. For modeling such non-linear and
complex problems, intelligent systems such as neural networks can be preferred.
Also, neura networks are used in dynamic system control and identification.
Identification and control of dynamic systems are so complicated process. Since
output is a function of past-output or past-input or both of them, identification and
control of dynamic systems are not comprehensible such as static systems. Also,
when dynamic systems are used with long taped delay, input dimension excessively
increase.

Overcome the input dimension increase, ElIman (1990) and Jordan (1988)
developed recurrent neural networks. In these networks, the delayed states of the
hidden or output nodes copy to the hidden layer neurons with an extra set of context
nodes. Hopfield (1985) and Tank (1986) proposed some neural networks to solve
optimization problems. Pearlmutter (1989) developed a fully recurrent neural
network which all nodes are connected to each other. In the Radial basis function
network (Billings and Fung, 1995), past output values of the network are fed to input
and output nodes. In (Sree Hari Rao and Yadaiah, 2005), a new approach was
improved for artificial neural networks to identify parameters of dynamical systems.
Coban (2013) suggested the Context Layered Localy Recurrent Neural Network
(CLLRNN) to identify linear and nonlinear characteristics of the dynamic systems.
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Savran (2007) proposed a new recurrent neural network (RNN), which is called the
Multifeedback-Layer Neural Network (MFLNN).

The neural networks are the key structure for the designing and analyzing of
the nonlinear control systems (Choi et al., 2001). In HDD control, Ge et al. (1998)
and Lewis et al. (1999) proposed adaptive neural networks. In Ge et a. (1998) and
Wang et al. (2001), a neural network controller with estimator is developed for the
voice coil motor mass/inertia and a neural network control element to eliminate
disturbances. In Plett (2003), it is shown that dynamic neural networks have
significant benefits to prevent unknown disturbances. Mukhopadhyay and Narendra
(1993) proposed a Multilayer neural network to reduce the adverse effects of the
disturbances.

Recurrent neural network techniques are attractive alternatives to accomplish
to control. In this study, the MFLNN proposed by Savran (2007) is used to control
the reader head in a hard disk drive. The MFLNN is the very new version of the
Recurrent Neural Networks (RNN). The MFLNN has three feedback layers for
recurrence unlike the other RNNs which has simple feedback elements (Savran,
2007).

In this study, the Particle Swarm Optimization (PSO) agorithm is chosen for
the MFLNN training. The derivative based agorithms such as the back-propagation
and Levenberg-Marquart (LM) agorithms require desired values of the network’ s
output or Jacobian of the system during the training. Therefore, it is not suitable for
controller design (Aksu and Coban, 2013) . To thisend, The PSO is preferred to train
the MFLNN. To improve training ability of the PSO, it is enhanced by some
modifications.

In the literature, the usage of the PSO as the training agorithm of a neural
network structure is very common. In Mendes et al. (2002), the Feedforward Neural
Networks (FNN) is trained by the PSO and this system are applied to the
classification and regression tasks. The results of the study are compared with the
results which are obtained by using gradient-based algorithm. In Junyou (2007), the
PSO algorithm is choosen to train the feedforward neural network. In the study, the

success of the PSO is shown by comparing the results of back-propogation method
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and the PSO. In this paper, the MFLNN is used for the dynamic systems whereas the
other network structures are used for static systems. This shows that the MFLNN
structure is more powerful. In this study, the MFLNN is trained with the PSO for the

first time.
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2. STRUCTURE OF THE MFLNN, THE PSO ALGORITHM AND THE
HARD DISK DRIVER

Nowadays, neuro-control of the dynamic systems comes into prominence. To
achieve this purpose, different types of neural controller structures are developed. In
this study, a new type of neuro controller which is achieved by the MFLNN and the
PSO is utilized for control of different dynamic systems and a disk drive system. In
the following subsections, the MFLNN and as its training algorithm the PSO, and the
HDD are presented, briefly.

2.1. The MFLNN

In this study, the MFLNN (Savran, 2007) is employed as a neuro-control ler
owing to the fact that it has nonlinear structure, good convergent property, and fast
learning capability. The MFLNN is a type of recurrent neural networks which has
four hidden layers (three of which are feedback layers), an input layer and an output
layer. Structure of the MFLNN is depicted in Figure 2.1. A linear activation function
Is used as an activation function in the input layer. The hyperbolic tangent activation
function is used in hidden layers and output layer. The input layer takes information
from outside and transmits it to hidden layers with no alteration. The output layer
takes information from hidden layers and sends it outside through the activation
function. Whereas the input and output layers have physical links to outside, the

hidden layers do not have.
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¥k}

v Lk 2

Figure 2.1. Structure of the MFLNN

Two local feedback layers and one global feedback layer are sited in the
MFLNN structure (Savran, 2007). The local feedback layers provide self-recurrency
for the output layer and the feedforward hidden layer while the other supplies a
global recurrency from the output layer to the feedforward hidden layer. x(k) is the
input of the network and y(k) is the output of the network. w, is the weight between
the input and the hidden layer, whereas W, is the weight between the hidden and the

output layer in the feedforward path. In the feedback and feedforward layers,
weighted sums of the delayed outputs of the hidden and output layers enter the
activation functions. W”, W,”, and W,” denote the input weights of the feedback
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layer neurons. W°, W,* and W,° symbolize the output weights of the feedback
layers. The information via these output weights is transmitted into the hidden and
output layer neurons. h°(k), y°(k), andz°(k) are the outputs of the feedback layer
neurons. One time delay is shown by z'* as in the z- domain notation, the bias
connections are not illustrated in the figure for the sake of simplicity.

Determination of the number of neurons in a hidden layer is extremely
important. The number of the hidden-to-hidden layer neurons must be equa to
number of the hidden layer neurons. Then, the number of the output-to-hidden layer
neurons must be equal to the number of the output layer neurons. The number of the
output-to-output neurons must be equal to the number of the output layer neurons.
These values can be properly changed to increase the accuracy of the network.

For training the network, error value must be calculated when the training is
performed from k=1 to k=T . The error value is caculated for each k in the

following:
e(k) = y(k)- (K (2.1)

where y(Kk) isthe output of the MFLNN and y(k) isthe desired output. Initial value
of the hidden layer output (h) and the output layer output (y) isequal to zero.

h(0)=0,  y(0)=0 (2.2)

The input values which entered to the activation function of feedback neurons

are
net, (k) = gl\/lbh(k - DY+ B (2.3)

net; (k) = @\ y(k - 1)g+ B3 (2.4)
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net? (k) = W, y(k - D+ B; (2.5

WP, W,°, W,° indicate the input weights of the feedback layers. B®, B,°, B,” arethe

bias values of neurons of the feedback layers. The outputs of the feedback layer

neurons are
he (k) =] ;(net; (k) (26)
y° (k) =j c(nets (k)) (2.7)
Z (k) =j s(netz (K)) (28)

where j ., j ,°, and j ,° represent the activation functions of the feedback layer

neurons. net, (k) and h(k) are the local fields of the hidden layer neurons and

output of the hidden layers, respectively, and calculated by
net, (k) = [Wx(K)] + 8n°he (k) g+ 8V, y° (K)g+ B, (2.9)
h(k)=j ,(net, (k)) (2.10)

where W, is the weight between the input and hidden layer, B, isthe bias for hidden
layer neuron, W and W, represent the output weights of the feedback layers, and
j » activation function of hidden layer, net, (k) is the local field of output layer

neurons, and Y isthe output of the output layer. They are computed in the following:

net, (k) =[W,h(k)] + @5 z° (k) |+ B, (2.11)
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y(k) =i, (net, (k)) (2.12)

where W, is the weights between the hidden and output layer, B, is the bias for
output layer neuron, j , isthe activation function of the output layer, and W,® is the

output weight of the feedback layers. The feedback structure of the MFLNN may be
atered according to the number of the feedback neurons and different types of
functions can be used as activation functions.

The network input data can be normalized (as the case may be) before data is
presented to the neural network. The formula, which the input data is linearly

normalized with, is as follows:

Xnorm — Vmax - Vmin X +Vminxmax - Vmaxxmin (213)
Xmax - Xmin Xmax - Xmin

where X, is normalized input data, V,,, is the minimum of the normalization

range, V., is the maximum of the normalization range, X isinput data, X, IS
minimum value for input dataand X, maximum value for input data. Then, at the
output of the neural network, the network output data is denormalized as follows:

Y =Y _ VminYmax - Vmamein e Ymax - Ymin (214)

denorm norm
Ymax - Ymin Vmax - Vmin

where Y. is the output of the network which is normalized, Y,,, isthe minimum

value for output data and Y, _, is the maximum value for output data. In this study,
V,, andV,_, arechosen-1.0and+1.0, respectively.

The activation functions calculate the output of the neurons by the net
information come from layers. In neural networks, the different activation functions

can be used for neurons. The most fitting activation function is found by trying the
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different functions. In this study, linear, sigmoid, and hyperbolic tangent activation
functions given by Egs. (2.15) - (2.17) respectively, are used.

y=X (2.15)
1

= 2.16

e (2.16)

y =tanh(x)= 30X _€ - & (2.17)

cosh(x) e +e*

Adjustment of the network weights is crucia process. The network weights
are mostly determined by the back-propagation agorithm or the Levenberg-Marquart
algorithm for system identification. In the system identification there exist both
desired output information and network output information. Hence, the error between
them can be easily utilized for error back-propagation. However, in the control
scheme, no information about the desired value of the network output exists. Even if
there exists it may be so much expensive to obtain such information.The derivative
based algorithms such as the back-propagation and Levenberg- Marquart (LM)
algorithms require such desired values of the network’ s output or Jacobian of the
system during the training. Therefore, it is not suitable for controller design (Aksu
and Coban, 2013) . To this end, The PSO is preferred to train the MFLNN. To
improve training ability of the PSO, it is enhanced by some modifications. In
subsequent chapters, how the network weights are determined with the PSO
algorithm is mentioned.

2.2. The PSO
Optimization is a process to find out the best solution within the aternative

solutions of a specific problem under certain conditions. The PSO algorithm is

optimization technigue which uses intuitive methods. It is developed by inspiring

10
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from birds and fish swarms. It is based on population and devel oped by Kennedy and
Eberhart (1995).

The number of parameters in the PSO is less than the other population based
optimization techniques, so the application of the PSO is simple and requires less
memory. In Chen et a. (2013), the PSO is used for optimization of parameters of an
intelligent multi-category classifiers. In Tsekouras (2013), designing of radial basis
function networks with the PSO is examined. The timetabling problem is designed
with the PSO in Tassopoulos and Beligiannis (2012). Furthermore, the PSO
algorithm can be used in various engineering problems such as binary problems or
highly complex, multimodal, nonlinear, noisy, or non-differentiable dynamic
problems (Coban, 2011).

The PSO algorithm is based on following the bird which is closest the food.
In the PSO, the birds and the bird flocks are named as particles and swarms,
respectively. Algorithm is started with the population that consists of random
solutions. So, the velocity and location of any particle are randomly assigned. During
the training, each particle repositions its location in accordance with its flight
experience and it’ sneighbors flight experience in the search space.

In the literature, there are two different types of neighborhood topologies:
globa neighborhood and local neighborhood. In the global neighborhood topol ogy,
al particles are neighborhood of each other. This approach converges fast, but there
is a possibility of trap into the local optima. In the local neighborhood approach, a
particle has limited neighborhoods. The number of neighborhoods affects the
convergence rate. The local neighborhood topology has greater chance to fal into
global optima (Kelemen et al., 2008). In this work the local neighborhood topology
is preferred. The number of neighborhoods is selected %50.

Let the pbest designate the best location of each particle and gbest the best

location that neighborhoods of each particle have. With respect to the values of

pbest and gbest, the optimal solution is sought as updating the velocities and

positions of the particlesin the following:

11
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Vig =W’ Vid+cl,rlr(pid-&d)-l-cz,rzl(pgd-)gd) (2.18)
Xa = Xg Vg (2.19)

where d isthe index of dimension of the search space, i isthe index of the particle

in the swarm, r, and r, are the random numbers which are uniform distribution in the
range [0,1]. ¢, and c, are positive coefficientsand w isinertiavaue. v, and x, are
the particles velocity and the particles current position, respectively. p, is the
position of the pbest and p,, is the position of the gbest which is the best solution

of the neighbors.

Determination of ¢, c,, and w substantially affects the performance of the
PSO. ¢ and c, are stochastic acceleration coefficients. ¢, provides that the particle
moves along the pbest direction, while ¢, ensures that the particle moves along the

gbest direction. The values of the ¢, and c, are calculated as follows:

- G K
C,=C - w (2.20)
CZ = Clmin +C1max - Cl (221)

where ¢, and c,,, arethe minimum and maximum valuesfor c , respectively. k
is the iteration number and K isthe number of total iterations. In this study, ¢, and
c, values are choosen as 1.5 and 2.5, respectively, following some trial and errors.

The inertia weight factor w provides balance between local and global search.
Smaller value for w indicates the local search and larger value indicates the global

search, contrarily.
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In this study, linearly decreasing weight is used for inertia value. Initially,
global search is enabled by using a large inertia value. Towards the end of the run,
local search is enabled with small inertia value (Shi and Eberhart, 1999).

Wk = Wmax - w (222)

where w,,, isthe maximum value of inertiaweights, w,, isthe minimum value of

inertia weights, k is the iteration number and K is maximum iterations number. In

thisstudy, w_ and w, .. areselected 0.9 and 0.4, respectively.

ax

Since swarm size affects the performance of the PSO it must be determined
formerly. The desired solution may be obtained with larger swarm size. In contrast,
the use of a very large number of particles can increase the complexity of the
calculation. This situation requires more time than the process of finding the optimal
solution. In most of the studies, the swarm size is prefered between 20 and 60. Here,
the swarm size is taken 60 after a number of trialsis attempted.

In this study, the particle swarm optimization algorithm is improved. The

improvements made are as follows:

* to improve the performance of the PSO, the particle which has the worst
position is found and changed with the best position in the swarm during
training.

» the coefficient, is inserted into the Equation (2.19) for updating the

particle location given by
Xg = %g TG Vg (2.23)

The value of the coefficient c, is chosen in the range [0.1, 0.15],

randomly. Equation (2.23) isamodified version of Equation (2.19).

13



2. STRUCTURE OF THE MFLNN, THE PSO ALGORITHM AND THE HARD
DISK DRIVER Inayet Ozge AKSU

» to enhance the success of the algorithm, the mutation operation is added to
algorithm. The main purpose of the mutation is to prevent the problem
solutions from falling to alocal value during the iterations. The mutation

generdly:

avoids that solutions pass exactly same to next iterations after a
certain stage during the iterations.

avoids solutions to catch local optima.

is a method which is used to obtain the desired solutions more

quickly.

Here, the uniform mutation with a predifined ratio (probability) is chosen.
According to the predifined ratio the uniform mutation sums up the value
of the chosen particle with a uniform random value within the parameter’ s
range. In this study, as the mutation ratio is increased by 0.0001 at each
iteration, the possibility of falling into local best is avoided. Besides, on
the mutation stage, not only position but also velocity is subjected to the
mutation. When the mutation ratio is provided, position and velocity
values of particle are increased by the random value which obtained in the
range (KR [Xins Xvax ) » Where KR stands for a positive constant.

» when the network coefficients assume larger values in the range [-10, 10],
the convergence is not ensured during the training. Therefore, initial value
of the network coefficients are set in the range [-1,1], randomly at the
beginning of training. Afterwards, as iteration continues this interval is
expanded 10 times by a proper number (KR). Keeping the positions and
velocitiesinthisrange  (KR” [- 11]) enables the algorithm to converge

in a predefined number of iterations.

In order to demonstrate the success of improvements in the PSO, Easom

function is used in what follows:
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(%, %,) = - COS(x,) Cos(x,)e PPy’ (2.24)

where -100£ x £100 for i =1,2. While the desired result with the standard PSO

algorithm is found in the 7th run for 5000 iterations, with the improved PSO it is
found in the 49th iteration in the 1st run. This optimization results in an error of
1 10°.

In this study, the MFLNN weights are trained by the improved PSO. The
error value is obtained from the difference between reference signal and output
signal of the control system. At the beginning of each epoch, the initial values of
parameters are assigned randomly in the range just mentioned before. The error value
must be computed for the fitness function calculations in the PSO. The Root Mean

Square Error (RMSE) which is used as afitness function, are calculated as follows:

RMSE = \/ﬁa (y(k)- 9(k))2 (2.25)

where N is number of pairs of the data which are used during the training, y(k) is
the output of the control system, and y(k) is the reference output. The key steps of
the PSO are shown in Figure 2.2.
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Sl the purymelers of Lhe PRO
Flnitinlization
For Each particle in the swarm
Tmitialize posiaom of particles randommly i the range [ 5, %]
Imitialize veloviy of parlicles mndumly m the range [F. .40, ]
Enod
Flleration
Do
For Cach particle in the saarm
TNwvaluale the Miness value
If the fimess value is better than the best ftness value { phess ) in history
Set present valus as the new phes .
End
Select the particle with the hest fitness value in the neighharhood as the Wesr
For Each particle in the swarm
Find the particle with the worst fitness value and change it
ta the particle with the best fitness value
Compuce pacticls velocity according 1o Tiguation (218
Clamp the velocity in euch dimension to the rangs | ¥, . F. | = KR
Updite position of particle aceonding to Equation (2.23)
Clamypy the position in each dimension to the range [ X, .4 ] ¥ KR
Apply mutation
Fnd

While Termmmmiatiom eriteria 16 mL il Al led.

Figure 2.2. The pseudo-code of the PSO agorithm (Coban, 2011)

2.3. Hard Disk Driver

The track density and storage capacity of modern personal computers and
work stations increase rapidly. Hence, it would be very difficult to control the HDDs.
All the data are recorded in tracks which are concentric circles on adisk (Franklin et
al., 1990). Disks are driven by spindle motor. In a hard disk driver, datais read from
or written to by the READ/WRITE heads which mounted on the head slider. The
actuator provides the head to move around the surface of the disk.

In the early 1990s the data storage capacity and data access times of the disk
drives increased over 60 percent in every year. Towards the end of each year, the
ratio increased to 100 percent. Nowadays, the designers transfer the task of the disk
drives to the CPU to make improvements in computer environment (Hughes, 2002).
Off-line error recovery, disk drive failure warnings, and storing data across multiple
disk drives are studied in intelligent procedures (Dorf and Bishop, 2008).
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The head-positioning servo mechanism is a control system that provides
repositioning on the each track with minimum error and time. For the head-
positioning servo mechanism, track-seeking and track-following are two main
functions. Track seeking provides that READ/WRITE head to move from the current
track to desired track in the minimum-time. Track-following ensures that
READ/WRITE head is repositioned exactly over of given track with minimum
position error in spite of under disturbances while information is read from or written
to the disk.

The purpose of the disk drive system is to position the reader head on the
desired track in minimum time. Firstly the plant, the sensor and the controller are
decided. After that, model of the plant G(s) and the sensor are obtained. In Fig. 2.3,

the block diagram of a disk drive system is shown. Figure 2.3 shows the permanent
magnet DC motor which rotates the reader arm and a linear amplifier (Dorf and
Bishop, 2008). In this work, the model of the armature-controlled DC motor is
preferred.

+ Eis) LUES]
Ris] el A pl il [—e] Wotor and arm r ]|

Senzor  E

Figure 2.3. Block diagram of the HDD (Dorf and Bishop, 2008)

The transfer function of the disk drive system is given by (Dorf and Bishop,
2008)

—_ Km
G0 = {Gsrh)(s+R) (2.26)

where J is inertia of the arm and the read head, b is friction constant for the hard

disk driver. K, isamplifier gain, R isarmature resistance, L isarmature inductance
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and K, is motor constant value for the disk drive system. The values of these

parameters are given in Table 2.1.

Table 2.1. Characteristic parameters of disk drive reader (Dorf and Bishop, 2008)
Parameter  Typical Value

J 1N m s*/rad
20 N m s/rad
a 10-1000

m 5N m/A

B
K
R 1W
K
L 1mH

By using these values of the parameters the simplified transfer function of the

open-loop head reader is obtained by

CY(s) 5000
TV(s)  s(s+20)(s+1000)

G(9) (2.27)

The difference equation obtained by using the zero-order hold for 0.1 second

sampling period can be found as follows:
y(k)=11353" y(k-1) - 0.1353" y(k-2)

+0.0140" u(k-1) + 7.64" 10" u(k-2) (2.28)
+6.9049" 107" u(k-3)
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3. STRUCTURE OF THE NEURO CONTROLLER

In this section, firstly, the MFLNN which is a new type of recurrent neura
networks is trained with the PSO algorithm. At the end of the section, the MFLNN-
PSO structure is tested with the chaotic time series and a Multiple-Input-Multiple-
Output (MIMO) type nonlinear dynamic system. Afterwards, how the closed loop
identification of the reader head position of a disk drive system with the MFLNN-
PSO agorithm is described. Then, the system is tested with two different data sets. In
the last section, a new type of neuro controller is proposed by using the MFLNN-
PSO structure and then it is applied to two different kinds of dynamic systems and a
hard disk drive system.

3.1 Trainingthe MFLNN using the PSO Algorithm

In this chapter, the Multifeedback-Layer Neural Network (MFLNN) weights
are trained by the Particle Swarm Optimization (PSO). This method (MFLNN-PSO)
is applied to two different problems to prove accomplishment of the study. Firstly, a
chaotic time series prediction problem is used to test the MFLNN-PSO. Also, the
method is used for identification of a non-linear dynamic system. This study shows
that the MFLNN-PSO can be used for dynamic system identification as well as
controller design.

The PSO updates the network weights, which are used for training purpose.
For each training epoch, initial parameters are defined randomly. A set of input and
output data pairsis used for determining the error function to evolve parameters. The
error is calculated by the output of the MFLNN as in Equation (2.1). This error is
used in afitness function of the PSO. The weights of neural networks are updated via
the fitness value of the PSO. As a fitness function the root mean squared error
(RMSE) criteriain Equation (3.1) is used.
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RMSE:\/%&_ (y(k)- 9(k))2 (3.1)

where N issize of data pairs, y(k) isthe output of the network and y(k) isthe desired

output of the neural network. The above process will be continued until the desired

criteriaare fulfilled.
3.1.1 Simulation Results

In this section, the proposed algorithm is applied to non-linear dynamic
systems for prediction and identification. Training and prediction performances are

determined by using RM SE criteriaasin Equation (3.1).

Example 1

In this example, the learning and generalization ability of the MFLNN is

tested with chaotic time series. The mathematical expression of the model is guided
by

0.2x(t-t)
(t)=————- 0.1x(t

In 1993, Jang studied prediction of future values of this time series. Future
values are calculated by using method in (Jang, 1993). The integration of above
equation is done through the fourth order Runge-Kutta method. Time interval is 0.1,
initial value of x, isequal to x(0) =12 and for t <0 x(t)=0. t is defined as delay term

anditis17.

In this example, 1000 input-output data pairs are used. These data are
obtained from

i x' =gx(k-18) x(k-12) x(k- 6) x(k)g.{

i y (33)

1Y =[x(c+0) b
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where k isfrom 118 to 1117. First 500 data pairs and last 500 data pairs are used for
the training and testing data set, respectively. The MFLNN is formed four inputs,
five hidden and one output layer neurons. Figure 3.1 illustrates the outputs of the
plant and MFLNN. The convergence behavior of the neural network is shown in
Figure 3.2 which illustrates success of the proposed algorithm. The training
continued along 9000 time steps and during this process 96 parameters are trained.
The training and testing RMSES, which are obtained in the end of training, are
0.0038 and 0.0044, respectively. The prediction error is shown in Figure 3.3.

E]
&,
E
0.3 [T plﬂ.l’lf MFT.NN ]
{. ] 1 ] 1
] L 200 il 41 S(0)
tim index
Figure 3.1. Output of the plant and the MFLNN
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wir
7
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=
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epinchs

Figure 3.2. RM SE curves of the MFLNN
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Figure 3.3. The prediction error in Example 1

Example 2

In the second example, a Multiple-Input-Multiple-Output (MIMO) type non-
linear dynamic system which has two inputs and two outputs is identified. The
system which is identified was used as in (Sastry et a., 1994) and (Juang and Lin,
1999). The equation of the plant is

& y.(k-1) )
I S YOO
?ypl(k)l;l_ é l+yp2 (k-3 G a4
&l "8y k-y, (k-1 (34)
3 : +u (k)
g 1+y, (k-] g

where u, (k) and u,(k) are the inputs of the system, y,,(k) and v,,(k) are outputs of the
system, respectively, and k isthe discrete time step. The MFLNN is consisted of two
inputs, two outputs and two hidden layer neurons. First 500 samples of the training
data, which are independent and identically distributed (i.i.d.) uniform sequence over
[-2, 2], are obtained. Remaining 500 samples for two inputs are obtained through

sinusoidal signal given by sin(pk/45) ~The testing data for two inputs is obtained as

follows
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inayet Ozge AKSU
isin(pk/ 25), k < 250
i: 1 250 £ k <500
u(k) =7-1, 500 £ k < 750 (3.5)
i _ _
i 0.3si r?(p k/25)+0.1sin(p k / 32) 250 £ k <1000
f +0.6sin(p k /10),

In Figure 3.4, the outputs of dynamic system and outputs of the MFLNN for

the testing data are shown. First and second outputs of the system are demonstrated
in Figure 3.4 (a) and Figure 3.4 (b), respectively. The RMSE curve is shown in
Figure 3.5. For the MFLNN 42 parameters are trained in 9000 training time step. In

the testing phase, the RMSE values of outputs y, and y, are 0.0096 and 0.0054,

respectively. The prediction errors for both outputs are shown in Figure 3.6.
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Figure3.4. (@) First and (b) second outputs of the plant and the MFLNN
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Figure 3.5. RMSE curves of the MFLNN
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Figure3.6. The prediction error in Example 2 (a) for first output and (b) for
second output
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3.2 Identification of Disk Drive Systems using the MFLNN and the PSO
Algorithm

In this chapter, the closed loop identification of the reader head position of a
disk drive system is proposed by using the Multifeedback-Layer Neural Network. To
identify the system, the connection weights of the Multifeedback-Layer Neural
Network (MFLNN) are trained by the Particle Swarm Optimization (PSO) algorithm.
Simulation results show the effectiveness of the proposed method.

In this section to identify the closed-loop disk drive system the MFLNN-PSO
algorithm is used. Performance of identification algorithm is determined by RMSE
criteria as in Equation (3.1). For identification process the MFLNN has one input,

one output and four hidden layer neurons.

3.2.1 Simulation Results

In this work, in the training phase 1000 samples are used. First 500 samples
of the training data are obtained in the range [-2, 2] using a random number
generator. And the remaining 500 samples are obtained from a sinusoidal signal

given by sin(pk/45). The convergence behavior of the neural network is shown in

Figure 3.7 which illustrates achievement of the suggested algorithm. In the training,
58 parameters are trained by the PSO. This process is done in 9000 training time
step. The RMSE value of output in the training phase is 0.0070.
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Figure 3.7. RM SE curves of the MFLNN

The system is verified with two different data sets. The first data set is

obtained asfollows

isin(pk/25), k < 250
I, 250 £ k < 500

u(k) = 1. -1, 500 £ k < 750 (3.6)
I:ﬁ 0.3sin(pk / 25) +0.1sin(p k / 32)

. 750 £ k <1000
f +0.6sin(p k /10),

The reference and prediction outputs of the system are shown in Figure 3.8.
The RMSE value of output in the testing phase is 0.0086. The prediction error for the
first test data set is shown in Figure 3.9. For the second data set 1000 samples are
obtained by applying independent and identically distributed (i.i.d.) uniform
sequence over [-2, 2]. The identification performance of the system for this testing
data set is demonstrated in Figure 3.10. The RMSE value of output in the testing
phase is 0.0090. The prediction error for the second test data set is shown in Figure
3.11.
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Figure 3.8. Outputs of the plant and the MFLNN for the first data set
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Figure 3.10. Outputs of the plant and the MFLNN for the second data set
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3.3 Controller Design with MFLNN-PSO

In this chapter, a new type of neuro controller is put forward by using the
Multifeedback-Layer Neural Network (MFLNN) which has recently proposed. The
connection weights of the MFLNN, which is used in this study, are trained by the
Particle Swarm Optimization (PSO) algorithm. To improve training capability of the
PSO, it is enhanced by some modifications. Firstly, this MFLNN-PSO controller is
applied to two different kinds of dynamic systems. Then, it is applied to a hard disk
drive system as a real physical example. Simulation results show that the MFLNN-
PSO controller is effective and efficient on the control of dynamic systems and hard
disk drive system.

The aim of this section is to describe how the MFLNN-PSO controller is
designed and to explain how it can be used for control of a dynamic system. The
neural networks are successfully applied to the dynamic system control (Hagan and
Demuth, 1999). The network structure is crucial for the success and adaptation of the
system. The MFLNN is chosen for this system, due to the fact that the MFLNN is a
nonlinear model based on recurrent neural networks. Therefore, the controller
structure which is designed in this study is nonlinear. A scheme in Figure 3.12 shows
the neuro controller structure which is used in this study. In this model, fitness value
is used to adjust the parameters of the neural network. The training is performed

using the PSO agorithm. The fitness value that is necessary for PSO training is
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obtained from difference between plant output signal and reference signal. We can
see that the reference signal and past signal of the plant are input signals which enter
the controller. The output signal of the controller is amplified and entered the plant.
A similar control architecture with the genetic algorithm is used in Juang (2002) for
dynamic system control.

To train the network, the PSO algorithm is preferred instead of the derivative
based algorithms. The PSO is one of the intelligent algorithms whose application is
simple and easy. Initialy, the particles in the PSO algorithm spread to whole space
and find the global optimal solution without derivative and differential information.

For designing an effective neural controller, the behavior of the system which
shall be controlled should be understood very well. The training of the neural
network is related to determination of adaptable parameters of network, effectively.
During the training, the properties of the plant are taught to the MFLNN. The
training is continued until the difference between desired and actual plant response
will be desired value. In each iteration, the weights are updated to minimize the error
value. The success of the system is measured by the accuracy of the system’ s
response to input data that is not used in the learning phase. For al examples
controller gain (K) is set 10.

3.3.1 Simulation Results

In this section, the MFLNN-PSO is applied to control of some dynamic
systems. Control configuration of the MFLNN-PSO for training is shown in Figure
3.12 (a) and for testing is given in Figure 3.12 (b). The inputs to the neural network
controller consist of present reference signal and past output signal of the plant. For
the purpose of producing control signal, the MFLNN-PSO controller takes advantage
of both of these signals. Adaptation of the controller to different dynamic systems
and behavior on the hard disk drive system is tested via different examples. In these
examples, the MFLNN has four hidden layer nodes, two input layer nodes and one
output layer node. In the input layer, linear activation function is used. In the output

and hidden layers, hyperbolic tangent activation function is preferred for the
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MFLNN to delineate nonlinear behaviors of the dynamic system. The PSO
parameters used in this study is given in Table 3.1. Firstly, two different dynamic
system control problems are considered. The results in these examples are compared
with those in the TSK-type Recurrent Fuzzy Network with Genetic learning (TRFN-
G) which has same controller design configuration as the MFLNN-PSO controller
(Juang, 2002). In examples 1 and 2, the reference signals given in Juang (2002) is
used. In addition, the same reference signals are applied to HDD system in example
3and 4.

+
Fitness Value
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3 Controller K Plant )-!"'p{kﬂ}
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(a) (figure continued next page)
‘J."rfk+1 | ELNN uik) = .
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P
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(b)
Figure 3.12. Controller configurations (a) for training and (b) for testing
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Table 3.1. The PSO algorithm parameters used in examples

Parameter Symbol Value
Number of neighbors NN 30
Swarm size SS 60
Number of parameters D 62
First confidence coefficient (minimum value) clmin 15
First confidence coefficient (maximum value) clmax 25
Keep range coefficient KR 10
Mutation rate PM 0.001
Inertia (minimum value) wmin 04
Inertia (maximum value) wmax 0.9
Example 1

In the first example a nonlinear dynamic system which includes three past
outputs is used (Juang, 2002). The difference equation of the plant to be controlled is

given asfollows:

0.6y, (K)+y, (k- 1)(y, (k) +2.5)

Yolk+d)= 1+y2(K) + Y2 (k- 1)

+u(k)

(3.7)

where y, isoutput of the plant. 250 data which are used for training are obtained as

follows:

y.(k+1) =0.6y, (k) +0.2y (k- D+0.6sin(2pk/ 25), 1£k£110
= 0.6y, (k) +0.2y (k- 1) +0.2sin(2pk/ 25)
+0.4sin(pk/32), 110 <k £ 250 (3.8)

where y is the reference output. The reference signal used for testing performance

of the system is obtained as follows:

y,(k+1) =0.6y, (k) +0.2y. (k- 1) +0.2sin(2p k/ 25)
+0.4sin(pk/32), 250<k £ 500 (3.9)
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Training is continued for 9000 time steps. The fitness value used for PSO
algorithm in training is calculated as follows:

1 % 2
RMSE:\/—a (v, (k+1)- v, (k+D)
250 iy (3.10)

The RMSE values obtained in the results of the training and test stages are
presented in Table 3.2. In order to show the results following the training, the
reference and plant output are depicted in Figure 3.13. The result with the training
data is illustrated in Figure 3.13 (&), while that with the testing data is shown in
Figure 3.13 (b). It seems that the MFLNN-PSO has a better performance than the
TRFN-G which has more hidden layers. In other words, the MFLNN-PSO has a

higher accuracy for control of this system.

Table 3.2. Performance comparison between the MFLNN-PSO and TRFN-G in

example 1

TRFEN_G MFLNN-PSO
Training RM SE 0.0631 0.008703
Testing RMSE 0.0536 0.007544
Parameters 48 62
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Figure 3.13. Reference signal and output of the control system for example 1 (a)
for training (b) for testing

The RMSE curve of the system which indicates the performance of the
system is shown in Figure 3.14. Since output of the control system for the testing
signal and reference signal are almost the same, the prediction error of the system for

the testing signal is given in Figure 3.15. Control signal in response to testing signal
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is shown in Figure 3.16. According to the results, the MFLNN-PSO obtains better
results as compared with the TRFN-G.
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Figure 3.14. RM SE curve of the MFLNN-PSO for the example 1
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Figure 3.15. The prediction error of the control system for the example 1
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Figure 3.16. Control signal for the example 1

Example 2

In the second example, a dynamic system which is nonlinear with longer
input delays is controlled. The difference equation of the time-delayed dynamic plant
is given by (Juang, 2002):

y,(k+1) =0.72y, (k) +0.025y, (k- Du(k- 1)

+0.012(k - 2)+0.2u(k - 3) (3.11)

In this plant, the instantaneous output is a function of two previous outputs

and four previous inputs. The reference signal which is used during training is given

by

y(k+1)_110’ if KE50or 100<k £150
r -1 ;
115, if 50<k £100 or 150 <k £ 200 (3.12)
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Besides, the same signal is used for the testing stage. The model which is
illustrated in Figure 3.12 is used as a control configuration. The fitness value which

is necessary for the training is calculated by

1200

RMSE:\/—é y, (k+1)- y, (k+1))°
2004, ( ) (3.13)

After 9000 time step training, in order to make comparison between the
MFLNN-PSO and the TRFN-G, simulation results are given in Table 3.3. When
comparing results, the proposed controller in this study have explicitly better results
than the TRFN-G controller which is designed by Juang (2002). As seen in Table
3.3, the MFLNN-PSO achieves higher accuracy. The plant output and reference
signal that obtained after the training are shown in Figure 3.17. The converge
behavior of the MFLNN-PSO is indicated in Figure 3.18 that represents the system
performance. For this system, the prediction error of the system for the testing signal
is shown in Figure 3.19 which indicates the success of the system. Control signal
which is response to testing signal is demonstrated in Figure 3.20. It is seen in Figure
3.20, the proposed controller uses less control efforts to track the reference signal.

Table 3.3. Performance comparison between the MFLNN-PSO and TRFN-G in

example 2
TRFN_G MFLNN-PSO
Training RM SE 1.1374 0.0082937
Parameters 48 62
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Figure 3.17. Reference signal and output of the control system for the example 2
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Figure 3.18. RM SE curve of the MFLNN-PSO for example 2
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Figure 3.20. Control signal for the example 2

Example 3

In this example, the training and testing signals given by Equation (3.8) and
Equation (3.9) which are the same as those in the example 1 is used for controlling
the hard disk driver whose equation is given by Equation (2.28). Following the same
way in the earlier examples, the control model shown in Figure 3.12 is used. 250 data
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is used for both testing and training stages. The reference signals and outputs of the
system are shown in Figure 3.21. The output for the training signal is given in Figure
3.21 (@), while that for testing signal is shown in Figure 3.21 (b). The RM SE values
which are obtained from training and testing results are presented in Table 3.4. In

this example, fitness value is calculated by

1250

RMSE:\/—é_ y, (k+1)- y, (k+1)’
250 k=1( i ) (3.14)

For 9000 training time steps, RMSE curve is shown in Figure 3.22. The
tracking error between the desired and plant outputs during the training is indicated
in Figure 3.23. As can be seen in Figure 3.23, desired and plant outputs are ailmost
equal which means that the proposed controller follows the set-point efficiently.
Control signal in response to testing signal is shown in Figure 3.24. The control
signal which is obtained from the MFLNN-PSO controller shows the tracking

performance of the system.

Table 3.4. Performance of the MFLNN-PSO in example 3

MFLNN-PSO
Training RM SE 0.014370
Testing RM SE 0.012243
Parameters 62
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Figure 3.21. Reference signal and output of the control system for the example 3
(@) for training (b) for testing
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Figure 3.22. RM SE curve of the MFLNN-PSO for example 3
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Figure 3.23. The prediction error of the control system for example 3
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Figure 3.24. Control signal for the example 3

Example 4

In this example, for controlling the hard disk driver the same signals asin the
example 2 are used. Both training and testing stage uses the same reference signals,
which is given by Equation (3.12). The controlled plant, which isthe HDD system, is
given by Equation (2.28).

The convergent behavior which is obtained from training and testing results
are given in Table 3.5. Asin previous examples, the control model shown in Figure
3.12 isused. The fitness value used for PSO algorithm in training is obtained by

1 2
RMSE :\/ﬁg(yp(k+l)- y, (k+1))

(3.15)

After the training, the desired signal and plant output are demonstrated in
Figure 3.25 which shows the success of the system. Training is continued for 9000
time steps and the best network parameters are used for test phase. The RMSE curve
of the system which indicates the performance of the system is shown in Figure 3.26.
At the end of the training, the tracking error of the system for the testing signal is
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illustrated in Figure 3.27 which shows the performance of the system. Control signal
in response to testing signal is demonstrated in Figure 3.28. Figure 3.28 illustrates

that, the controller requires less control efforts to track the reference signal.

Table 3.5. Performance of the MFLNN-PSO in example 4

MFLNN-PSO
Training RM SE 0.074763
Parameters 62
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Figure 3.25. Reference signal and output of the control system for the example 4
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Figure 3.26. RM SE curve of the MFLNN-PSO for example 4
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4. CONCLUSION

In this study, initialy, the Multifeedback-Layer Neural Network (MFLNN)
weights are trained by the Particle Swarm Optimization (PSO). The MFLNN-PSO
structure is tested on chaotic time series prediction and non-linear dynamic system
identification problems. According to the results, high prediction and identification
accuracy is provided. Later, the closed loop identification of the reader head position
of adisk drive system is proposed. The MFLNN is preferred to identify the system.
Likewise, the MFLNN weights are trained by the PSO algorithm. The system is
tested with two different data sets. According to the simulation results it has been
shown that the disk drive system is identified successfully. Lastly, a new neuro
controller using the Multifeedback-Layer Neural Network (MFLNN) is proposed for
control of the disk drive system as well as nonlinear dynamical systems. In the same
way, the PSO algorithm is used to tune the parameters of the MFLNN. By comparing
the MFLNN-PSO controller with the other control configuration in the literature
(TRFN-G), the effectiveness and efficiency of the proposed neuro controller is
verified. It is seen that the MFLNN-PSO controller can be succesfully applied to the
hard disk drive system as well as linear and nonlinear dynamic systems.
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