YAŞLI HİPERTANSİFLERDE KARDİYOVASKÜLER RİSK, D VİTAMİNİ VE PARATHORMON DÜZEYLERİYLE ARTERYEL SERTLİK ARASINDAKİ İLİŞKİ

Dr. Salih IŞIK

UZMANLIK TEZİ

ADANA - 2011
YAŞLI HİPERTANSİFLERDE KARDİYOVASKÜLER RİSK, D VİTAMİNİ VE PARATHORMON DÜZEYLERİYLE ARTERYEL SERTLİK ARASINDAKİ İLİŞKİ

Dr. Salih IŞIK

UZMANLIK TEZİ

TEZ DANIŞMANI
Prof. Dr. İbrahim KARAYAYLALI

Bu tez, Çukurova Üniversitesi Bilimsel Araştırma Projeleri Fonu tarafından TF2009LTP81 no’lu proje olarak desteklenmiştir.

ADANA - 2011
TEŞEKKÜR

Tez çalışmanın oluşmasında ve yürütülmesinde her türlü desteği gösteren ve deneyimlerini benimle paylaşan değerli hocam ve tez danışmanım Prof. Dr. İbrahim KARAYAYLALI başta olmak üzere, eğitim sürecim boyunca ilgilerini esirgemeyen Anabilim Dalı başkanımız Prof. Dr. Hikmet AKKIZ hocama, tüm eğitim sürecimde bilgi ve deneyimlerinden yararlandığım değerli hocalara teşekkürleri sunuyorum.

Radyoloji Anabilim Dalı öğretim üyesi Doç. Dr. Kairgueldy AİKİMBAEV hocama, Kardiyoloji Anabilim Dalı öğretim üyesi Doç. Dr. Mesut DEMİR hocama, Biyoistatistik Anabilim Dalı öğretim üyesi Prof. Dr. Nazan Z. Alparslan hocama, Mikrobiyoloji Anabilim Dalı öğretim üyesi Prof. Dr. Akgün Yaman hocama ve laboratuvarlarının çalışan personeline, her zaman yanında olan aileme sonsuz teşekkürleri sunuyorum.

Dr. Salih IŞIK
İÇİNDEKİLER

TEŞEKKÜR ... I
TABLO LİSTESİ .. III
ŞEKİL LİSTESİ ... IV
KISALTMALAR ... V
ÖZET ve ANAHTAR KELİMELER .. VII
ABSTRACT and KEYWORDS ... VIII
1. GİRİŞ VE AMAÇ .. 1
2. GENEL BİLGİLER .. 3
 2.1. Hipertansiyon ... 3
 2.1.1. Tanım ... 3
 2.1.2 Hipertansiyonun Epidemiyolojisi ve Etyolojisi 4
 2.1.3. Esansiyel Hipertansiyonun Etyopatogenezi .. 6
 2.1.4. Hipertansiyon ve Kardiyovasküler Risk .. 7
 2.1.5. Hipertansiyonun Sistemik Etkileri ... 8
 2.2. Arteryel Sertlik ... 12
 2.2.1. Tanım ... 12
 2.2.2. Patofizyoloji .. 13
 2.2.3. Moleküler Belirteçler .. 14
 2.2.4. Temel Prensipler .. 15
 2.2.5. Arteryel Sertlikte Nöroendokrin Hormonlar ve Tuz 17
 2.2.6. Arteryel Sertlikte Glukoz ve İnsülin ... 17
 2.2.7. Arteryel Sertliği Saptamada Kullanılan Non-invaziv Yöntemler 18
 2.3. D Vitamini .. 21
 2.3.1. D Vitamini Metabolizması .. 21
 2.3.2. 25(OH)D ... 22
 2.3.3. D Vitamini ve Kan Basıncı .. 23
 2.3.4. D Vitamini, Kalsiyum ve Paratiroid Hormon .. 23
 2.3.5. D Vitamininin Damar Duvarına Etkisi ... 23
 2.3.6. Diğer Mekanizmalar .. 24
 2.3.7. D Vitamini ve Periferik Arteryel Kalsifikasyon 24
 2.4. Paratiroid Hormon (PTH, Parathormon) .. 25
 2.4.1. PTH Salverilisinin Kontrolü ... 26
 2.4.2. Etkileri .. 26
 3. GEREÇ VE YÖNTEMLER ... 27
 4. BULGULAR ... 30
 5. TARTIŞMA ... 39
 6. SONUÇLAR VE ÖNERİLER ... 44
KAYNAKLAR .. 45
ÖZGEÇMİŞ ... 54
<table>
<thead>
<tr>
<th>Tablo no:</th>
<th>Sayfa no:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablo 1. HT Evreleme</td>
<td>3</td>
</tr>
<tr>
<td>Tablo 2. Etyolojine Göre Sekonder Hipertansiyon Sebepleri</td>
<td>5</td>
</tr>
<tr>
<td>Tablo 3. Prognozu Etkileyen Faktörler</td>
<td>8</td>
</tr>
<tr>
<td>Tablo 4. D Vitamini Düzeyleri</td>
<td>22</td>
</tr>
<tr>
<td>Tablo 5. Hasta ve Kontrol Grubu Demografik ve Laboratuvar Özellikleri</td>
<td>30</td>
</tr>
<tr>
<td>Tablo 6. Kardiyovasküler Risk Gruplarına Göre Hastaların Karşılaştırılması</td>
<td>31</td>
</tr>
<tr>
<td>Tablo 7. Hipertansif Hastaların D Vitamini Düzeylerine Göre Karşılaştırılması</td>
<td>32</td>
</tr>
<tr>
<td>Tablo 8. D Vitamini ≤10 ng/ml Olan Hasta ve Kontrol Grubu Karşılaştırması</td>
<td>33</td>
</tr>
<tr>
<td>Tablo 9. D Vitamini >10 ng/ml Olan Hasta ve Kontrol Grubu Karşılaştırması</td>
<td>34</td>
</tr>
<tr>
<td>Tablo 10. PTH Düzeyi ≤27 pg/ml ile >27 pg/ml Olan Grupların Karşılaştırılması</td>
<td>35</td>
</tr>
<tr>
<td>Tablo 11. PTH Düzeyi >27 pg/ml Olan Hasta ve Kontrol Gruplarının Karşılaştırılması</td>
<td>36</td>
</tr>
<tr>
<td>Tablo 12. Hipertansiflerde D Vitamini Düzeyleri ile Cinsiyet Karşılaştırılması</td>
<td>36</td>
</tr>
<tr>
<td>Tablo 13. Hipertansif Hastalarda PTH ve D Vitamini ile Arteryel Sertlik Arasındaki İlişki</td>
<td>36</td>
</tr>
<tr>
<td>Tablo 14. Kardiyovasküler Risk Gruplarına Göre D Vitamini ve PTH Düzeyleri ile Arteryel Sertlik Arasındaki İlişki</td>
<td>37</td>
</tr>
<tr>
<td>Tablo 15. Hipertansif Hastalarda HOMA-IR ve İyonize Kalsiyum Düzeyleriyle Arteryel Sertlik İndeksi Arasındaki İlişki</td>
<td>37</td>
</tr>
<tr>
<td>Tablo 16. PTH ve 25(OH)D Düzeyleri ile Sigara Arasındaki İlişki</td>
<td>38</td>
</tr>
</tbody>
</table>
ŞEKİL LİSTESİ

- Şekil 1. Esansiyel hipertansiyonda patofizyolojik mekanizmalar .. 6
- Şekil 2. Kardiyovasküler risk sınıflaması .. 7
- Şekil 3. SKB, DKB ve Yansıyan dalga formları oluşumu... 16
- Şekil 4. Karotis-femoral NDH’nin ayaktan ayağa yöntemyle ölçülmesi... 18
- Şekil 5. A) Lümen kesitsel alanında atm değişikliğinin (ΔA) şematik gösterimi B) KB ve çapta atm değişikliklerinin eşzamanlı kaydı.. 19
- Şekil 6. Nabız basıncı dalga şekli .. 20
- Şekil 7. D vitamininin antihipertansif etkileri .. 25
KISALTMALAR

<table>
<thead>
<tr>
<th>Kısaltma</th>
<th>Açıklaması</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABD</td>
<td>Amerika Birleșik Devletleri</td>
</tr>
<tr>
<td>AGE</td>
<td>İleri glikasyon yıkım ürünleri (advanced glication end products-AGEs)</td>
</tr>
<tr>
<td>AII</td>
<td>Anjiyotensin II</td>
</tr>
<tr>
<td>DKB</td>
<td>Diyastolik kan basıncı</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiyoğrafı</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerüler filtrasyon hızı (Glomerular filtration ratio)</td>
</tr>
<tr>
<td>HDL</td>
<td>Yüksek dansiteli lipoprotein</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Homeostasis model assessment insulin resistance</td>
</tr>
<tr>
<td>HT</td>
<td>Hipertansiyon</td>
</tr>
<tr>
<td>IMK</td>
<td>İntima media kalınlığı</td>
</tr>
<tr>
<td>KB</td>
<td>Kan basıncı</td>
</tr>
<tr>
<td>KV</td>
<td>Kardiyovasküler</td>
</tr>
<tr>
<td>KY</td>
<td>Kalp yetersizliği</td>
</tr>
<tr>
<td>LDL</td>
<td>Düşük dansiteli lipoprotein</td>
</tr>
<tr>
<td>LVH</td>
<td>Sol ventrikül hipertrofisi (Left ventricular hypertrophy)</td>
</tr>
<tr>
<td>MDRD</td>
<td>Modification of diet in renal disease</td>
</tr>
<tr>
<td>MI</td>
<td>Miyokard enfarktüsü</td>
</tr>
<tr>
<td>NB</td>
<td>Nabız basıncı</td>
</tr>
<tr>
<td>NDH</td>
<td>Nabız dalga hızı</td>
</tr>
<tr>
<td>NO</td>
<td>Nitrik oksid</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitrik oksid sentaz</td>
</tr>
<tr>
<td>PTH</td>
<td>Paratiroid hormon</td>
</tr>
<tr>
<td>RAAS</td>
<td>Renin anjiyotensin aldosteron sistemi</td>
</tr>
<tr>
<td>SDBY</td>
<td>Son dönem böbrek yetmezliği</td>
</tr>
<tr>
<td>SHR</td>
<td>Spontan hipertansif rat (Spontaneously hypertensive rat)</td>
</tr>
<tr>
<td>SHR-SP</td>
<td>İnme eğilimli spontan hipertansif rat (Stroke-prone spontaneously hypertensive rat)</td>
</tr>
<tr>
<td>SKB</td>
<td>Sistolik kan basıncı</td>
</tr>
<tr>
<td>TLR</td>
<td>Tall like receptor</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>USG</td>
<td>Ultrasonografi</td>
</tr>
<tr>
<td>UVB</td>
<td>Ultraviyole B</td>
</tr>
<tr>
<td>VDKH</td>
<td>Vasküler düz kas hücresi</td>
</tr>
<tr>
<td>VDR</td>
<td>Vitamin D reseptörü</td>
</tr>
<tr>
<td>VKİ</td>
<td>Vücut kitle indeksi</td>
</tr>
<tr>
<td>VLDL</td>
<td>Çok düşük dansiteli lipoprotein</td>
</tr>
</tbody>
</table>
ÖZET

Yaşlı Hipertansiflerde Kardiyovasküler Risk, D Vitamini ve Parathormon Düzeyleri ile Arteryel Sertlik Arasındaki İlişki

Giriş ve Amaç: Arteryel sertlik; sigara içimi, hiperkolesterolemi, diabetes mellitus, hipertansiyon gibi bilinen aterosklerotik risk faktörlerinin artışı ve yaşlanmanın sonucu olarak meydana gelir. Bu çalışmada 65 yaş ve üstü hipertansif hastalarda kardiyovasküler risk, D vitamini ve parathormon düzeyleri ile arteryel sertlik arasındaki ilişki araştırıldı.

Bulgular: Çalışmamızda 25(OH)D ve parathormon düzeyleri ile karotis sertlik indeksi düzeyleri (p=0,240 25(OH)D düzeyleri ve karotis sertlik indeksi arası p=0,240, parathormon düzeyleri ve karotis sertlik indeksi arası p=0,901) karşılaştırılmasında istatistiksel olarak anlamli bir fark saptanmadı. Kardiyovasküler risk grupları arasında yüksek derece ek riski bulunan grupta (p=0,037) karotis sertlik indeksi anlamli derecede yüksek saptandı.

Anahtar Sözcükler: Hipertansiyon, arteryal sertlik, vitamin D, Parathormon
ABSTRACT

Cardiovascular Risk, Vitamin D and Parathormone levels and Relationship Between Arterial Stiffness in Elderly Hypertensives

Background and Aims: Arterial stiffness occurs as a result of atherosclerotic risk factors growth like smoking, hypercholesterolemia, diabetes mellitus, hypertension and aging. In this study, we investigated to evaluate whether cardiovascular risk, serum 25(OH)D and parathormone levels are independently associated with arterial stiffness in hypertensive patients over 65 years of age.

Materials and Methods: 99 patients aged 65 years and older who admitted to Cukurova University Medical Faculty Hospital with a diagnosis of essential hypertension were enrolled. 10 people without a chronic disease and drug use were considered as control group. In 99 patients, serum 25(OH)D and parathormone levels were determined. The change in common carotid diameter in systole relative to diastole was measured at baseline by ultrasonography. Several stiffness parameters were determined. Systolic and diastolic blood pressure values were recorded simultaneously. Degree of cardiovascular risk, 25(OH)D and parathormone levels were compared with carotid stiffness index (β index).

Results: In our study no statistically significant difference found between 25(OH)D, parathormone levels (p=0.240 between 25(OH)D levels and carotid stiffness index, p=0.901 between parathormone levels and carotid stiffness index) with carotid stiffness index. Significant increase in mean carotid stiffness index was seen in high degree risk group (p=0.037) in cardiovascular risk groups.

Conclusion: Serum 25(OH)D and parathormone levels, however was not associated with arterial stiffness index, possibly due to hypertensive patients were under hypertensive medication to control blood pressure in our study. For understanding the need for vitamin D replacement and the relationship between vitamin D levels and arterial stiffness in 65 years and older hypertensive patients more extensive studies are needed. Further clinical and experimental studies may be needed to determine whether correction of vitamin D deficiency could contribute to the prevention of arterial stiffness.

Key Words: Hypertension, arterial stiffness, vitamin D, Parathormone
1. GİRİŞ VE AMAÇ

Yaşlı hipertansiflerde arteryel sertlik ve D vitaminini ilişkisinin saptanması diğer kardiyovasküler risk faktörleri dışında kardiyovasküler hastalık riskini öngörebilecek yeni bir belirleyici olarak D vitaminin önemi ortaya koyabilir ve birlikte kullanıldığında hipertansiyonun kardiyovasküler hastalık gelişme riskini belirlemesi açısından prognostik değerini arttırmaktadır. Bu çalışma ile yaşlı hipertansif bireylerde D vitamini ile arteryel sertlik arasındaki potansiyel ilişkiyi belirlemesi ve serum
25(OH)D düzeylerinin arteryal sertlik ile muhtemel ilişkisinin ortaya konmasını, hipertansif yaşılarda kardiyovasküler risk düzeyi ile arteryal sertlik arasındaki ilişkinin ortaya konması amaçlanmıştır.
2. GENEL BİLGİLER

2.1. Hipertansiyon

2.1.1. Tanım

Hipertansiyon, tüm dünyada en sık doktora başvuru nedenlerinden birisidir. Hipertansiyon, arteriyel kan basıncının normal sınırların üzerinde seyretmesi olarak tanımlanmaktadır. Ancak anormal sayılması gereken basıncı değer için kesin sınırlar belirlemek zordur. Bugün sistolik kan basıncının 140 mmHg, diyastolik kan basıncının da 90 mmHg veya üzerinde bulunması ya da kişinin antihipertansif ilaç kullanıyor olması hipertansiyon olarak tanımlanır. Doğrudan hipertansiyona bağlanacak morbidite ve mortaliteyeye ek olarak yüksek kan basıncı çesitli kardiyovasküler hastalıkların olasılığını artırarak güçlü bir risk faktörüdür. Uzun dönem kardiyovasküler riskin belirlenmesinde herhangi bir eşik kan basıncı değeri olmadığı, kan basıncı arttıkça bu riskin arttığını ortaya konmuştur.

Hipertansiyonu tanımlamak amacıyla farklı profesyonel organizasyonlarda pek çok kılavuz sunulmuştur. ülkemiz açısından en geçerli kılavuz Avrupa Hipertansiyon Topluluğu/Avrupa Kardiyoloji Topluluğu'nun Hipertansiyon Tanı ve Tedavi Kılavuzu'dur. Bu kılavuzda hipertansiyonun bir tanımı ve sınıflandırılması sunulmuştur. Bu kılavuzlar hekimin işyerinde tekrarlayan sfigmomanometrik ölçümlerde sistolik veya diyastolik kan basıncı değerinin >140/90 mmHg olmasını hipertansif durum olarak değerlendirilmektedir. Kılavuzlar ayrıca kan basıncındaki yükselmenin büyüklüğü temelinde farklı risk kategorileri tanımlamaktadır. Buna ilave olarak sistolik kan basıncının >140 mmHg ve beraberinde diyastolik kan basıncının <90 mmHg olması şeklinde tanımlanmış bir izole sistolik hipertansiyon sınıflaması da yapılmıştır. Hipertansiyon için geçerli sınıflama tablo 1'de sunulmuştur.

Tablo 1. HT Evrelendirmesi

<table>
<thead>
<tr>
<th>Kategori</th>
<th>SKB (mmHg)</th>
<th>DKB (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum</td>
<td><120</td>
<td><80</td>
</tr>
<tr>
<td>Normal</td>
<td>120-129</td>
<td>80-84</td>
</tr>
<tr>
<td>Yüksek Normal</td>
<td>130-139</td>
<td>85-89</td>
</tr>
<tr>
<td>Evre 1 HT</td>
<td>140-159</td>
<td>90-99</td>
</tr>
<tr>
<td>Evre 2 HT</td>
<td>160-179</td>
<td>100-109</td>
</tr>
<tr>
<td>Evre 3 HT</td>
<td>≥180</td>
<td>≥110</td>
</tr>
<tr>
<td>İzole Sistolik HT</td>
<td>≥140</td>
<td><90</td>
</tr>
</tbody>
</table>
Bir milyondan fazla bireyin incelendiği 61 çalışmaın meta analizi sonucu sistolik 115 mmHg, diastolik 75 mmHg üzeri kan basıncı değerlerinde iskemik kalp hastalığı ve inme insidansı progresif olarak artmaktadır. Sistolik kan basıncında her 20 mmHg, diastolik kan basıncında her 10 mmHg artış, iskemik kalp hastalığı ve inme bağlı mortalite riskini 2 katına çıkarmaktadır\(^{(14)}\). Dolayısıyla klasik tanımda hipertansiyon olarak tanımlanmayan kan basıncı değerlerinde de kardiyovasküler morbidite ve mortalite artmaktadır.

Optimal kan basıncı düzeyleri ile karşılaştırılan yüksek normal kan basıncı düzeyleri kardiyovasküler hastalıklar için bir risk faktörüdür. Yüksek normal kan basıncı düzeyleri artmış kardiyovasküler hastalık riski ile ilişkilidir\(^{(15)}\).

2.1.2 Hipertansiyonun Epidemiyolojisi ve Etyolojisi

1990’lı yıllarda ABD’de 65 yaş üstü hipertansif hasta grubunun oranı % 12,5 iken 2050 yılında bu oranın % 20’ye çıkacağını düşünülmektedir. 2010 yılında 39 milyon olan yaşlı sayısının 2030 yılında 69 milyon olması beklenmektedir\(^{(16)}\). Populasyondaki yaşlı sayısının artışına da yaşların 2/3’ünü etkileyen hipertansiyon sıklığının artmasına neden olmaktadır\(^{(17)}\). ABD’deki ulusal verilere göre hipertansiyon prevalansı 30 yaşında % 4 iken 80 yaşında % 65 olarak saptanmıştır\(^{(18)}\). Framingham çalışmasında normotansif bireylerin % 25-50’indeki 26 yıllık izlem sonunda evre 2 veya daha yüksek hipertansiyon geliştiği gösterilmiştir\(^{(19)}\).

Ülkemizde hipertansiyon prevalansı ile ilgili ilk geniş kapsamlı çalışma Türkiye’de Erişkinlerde Kalp Hastalığı ve Risk Faktörleri Sıklığı olarak adlandırılan TEKHARF çalışmasıdır. Arteriyel kan basıncı 140/90 mmHg veya daha yüksek olan erişkinlerin oranı kentsel kesimde % 31,7, kırsal kesimde % 36,4, Türkiye genelinde ise % 33,7 bulunmuştur\(^{(20)}\).

2003 yılında 18-80 yaş arası yaklaşık 5000 bireyin incelendiği Türk Hipertansiyon Prevalans Çalışması veya diğer deyişle PatenT (Prevalence, awareness and treatment of hypertension in Turkey) çalışması, ülkemizde hipertansiyonun sıklığı, dağılımı, farkındalığı, tedavi ve kontrol oranları konusunda en güncel ve kapsamlı bilgilere erişmek amacıyla gerçekleştirilmiştir\(^{(21)}\). Çalışmada hipertansiyon prevalansı % 31,8 bulunmuştur. Prevalans kadınlarda % 36,1 iken, erkeklerde % 27,7 olarak rapor edilmiştir. Ayrıca, hipertansiyonluların sadece % 40,7’sinin hastalıklarının farkında olduğu tespit edilmiştir. Hipertansiyonlu hastaların sadece % 31,1’nin antihipertansif
tedavi aldığı ve tedavi alanların sadece % 20,7’sinin kan basıncının kontrol altında olduğu saptanmıştır. Hipertansiyon kontrol oranı, tüm hipertansiflerde % 8,1 olarak saptanmıştır. Geriatриk populasyonda (≥ 65 yaş) hipertansiyon prevalansı ise % 75,1 (erkeklerde % 67,2, kadınlarda % 81,7) olarak saptanmıştır. Framingham kalp çalışmasından alınan 55-65 yaş arası 1298 normotansif katılımcıyla gerçekleştirilen çalışmada hayat boyunca hipertansiyona sahip olma riski % 90 olarak bulunmuştur. Bu oran çalışmaya alınan kadınlar ve erkekler arasında fark göstermemektedir(22). Hipertansiyonda kan basıncı yükselmesi, kardiyovasküler hastalık ve mortalite riskini artırdığı için tedavi edilmelidir. Framingham kalp çalışmasında kardiyovasküler risk faktörlerinin hipertansiflerde toplandığı gösterilmiştir.

Tablo 2. Etyolojisine Göre Sekonder Hipertansiyon Sebepleri

<table>
<thead>
<tr>
<th>A. Eksojen madde</th>
<th>D. Nörolojik hastalık</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Oral kontraceptif ilaçlar</td>
<td>- Akut serebrovasküler iskemi</td>
</tr>
<tr>
<td>- Glukokortikoidler</td>
<td>- Uyku-apne sendromu</td>
</tr>
<tr>
<td>- Glisirrizinin asit</td>
<td>- Guillain-Barre sendromu</td>
</tr>
<tr>
<td>- Eritropoietin</td>
<td>- Kuadripleji</td>
</tr>
<tr>
<td>- Siklosporin</td>
<td>- Ailesele disotonomi</td>
</tr>
<tr>
<td>- Steroid dışı antiinflamatuar ilaçlar</td>
<td></td>
</tr>
<tr>
<td>- Akut alkol alımı</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Renal hastalik</th>
<th>E. Gebelik</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Renovasküler hipertansiyon</td>
<td>- Gebelik ilişkili hipertansiyon</td>
</tr>
<tr>
<td>- Renal parankimal hipertansiyon</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Endokrin hastalıq</th>
<th>F. Aort koarktasyonu</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Kortikoadrenal hipertansiyon</td>
<td></td>
</tr>
<tr>
<td>- Hipertiroidizm ve hipotiroidizm</td>
<td></td>
</tr>
<tr>
<td>- Feokromositoma</td>
<td></td>
</tr>
<tr>
<td>- Akromegalı</td>
<td></td>
</tr>
</tbody>
</table>
2.1.3. Esansiyel Hipertansiyonun Etyopatogenezi

Şekil 1. Esansiyel hipertansiyonda patofizyolojik mekanizmalar
2.1.4. Hipertansiyon ve Kardiyovasküler Risk

<table>
<thead>
<tr>
<th>Kan basıncı (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diğer risk faktörleri, OH veya hastalık öyküsü</td>
</tr>
<tr>
<td>Başka risk faktörü yok</td>
</tr>
<tr>
<td>Ortalama risk</td>
</tr>
<tr>
<td>1-2 risk faktörü</td>
</tr>
<tr>
<td>Düşük ek risk</td>
</tr>
<tr>
<td>3 yada daha fazla risk faktörü, MS, OH veya diyabet</td>
</tr>
<tr>
<td>Orta derecede ek risk</td>
</tr>
<tr>
<td>Saptanmış KV hastalık veya böbrek hastalığı</td>
</tr>
<tr>
<td>Çok yüksek ek risk</td>
</tr>
</tbody>
</table>

Şekil 2. Kardiyovasküler risk sınıflaması
<table>
<thead>
<tr>
<th>Risk faktörleri</th>
<th>Subklinik organ hasarı</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sistolik ve diastolik KB düzeyleri</td>
<td>- Elektrokardiyografik LVH (Sokolow-Lyon>38 mm; Cornell>2440 mm msn) veya:</td>
</tr>
<tr>
<td>- Nabız basıncı düzeyleri (ileri yaşta)</td>
<td>- Ekokardiyografik LVH (sol ventrikül kitle indeksi ≥125 g / m², ≥110 g m²)</td>
</tr>
<tr>
<td>- Yaş (E>55 yaş; K>65 yaş)</td>
<td>- Karotis duvarında kalınlaşma (IMK > 0.9 mm) veya plak</td>
</tr>
<tr>
<td>- Sigara</td>
<td>- Karotis - femoral NDH > 12 m/sn</td>
</tr>
<tr>
<td>- Dislipidemide</td>
<td>- Ayak biliği / brakiyal KB indeksi <0,9</td>
</tr>
<tr>
<td>Total Kol. > 190 mg / dl veya:</td>
<td>- Plazma kreatininde hafif artış: E: 1.3-1.5 mg / dl, K: 1.2-1.4 mg / dl</td>
</tr>
<tr>
<td>LDL – Kol. > 115 mg / dl veya:</td>
<td>- Tahmini glomerüler filtrasyon hızının (<60 ml / dak./ 1.73 m²) veya kreatinin klirensinin (<60 ml / dak) düşük olması</td>
</tr>
<tr>
<td>HDL – Kol. E < 40 mg / dl, K< 46mg / dl</td>
<td>- Mikroalbuminüри 30-300 mg / 24 saat veya albümin / kreatinin oranı: ≥ 22 (E); veya ≥ 31 (K) mg / gr kreatinin</td>
</tr>
<tr>
<td>TG > 150 mg/dl</td>
<td></td>
</tr>
<tr>
<td>- Açık plazma glukozu 102-125 mg / dl</td>
<td></td>
</tr>
<tr>
<td>- Anormal glukoz tolerans testi</td>
<td></td>
</tr>
<tr>
<td>- Abdominal obezite (Bel çevresi >102 cm (E), >88 cm (K))</td>
<td></td>
</tr>
<tr>
<td>- Ailede erken yaşta kardiyovasküller hastalıktan öyküsü (E<55 yaş; K<65 yaş)</td>
<td></td>
</tr>
</tbody>
</table>

2.1.5. Hipertansiyonun Sistemik Etkileri

Kardiyak Etkiler

LVH’nin iki önemli sonucu iskemi ve aritmıdır. Benzer KB değerlerine karşı bazı hipertansif bireylerde LVH gelişmesi yaş, cinsiyet, tuz alımı, vücut ağırlığı, sempatik sinir sistemi, genetik faktörler ve RAAS aktivasyyonunun da LVH gelişiminde etkili olduğunu düşünürmektedir. Bazı hastalarda HT’nin kontrolüne karşın LVH’nin gerilememesini de bu faktörlerin önemi göstermektedir. HT’ye bağlı ölüm oranı LVH varlığında yaklaşık iki kat artmaktadır. Koroner kalp hastalığı, inme, retinopati ve nefropati gibi diğer organ hasarları gelişimi ile ilişkili olan LVH, KB’nin düşürüldüremesi
ile erken evrede gerileyebilmektedir. Meta analiz verileri, RAAS’yi bloke eden ilaçların artan sol ventrikül kitlesini diğerlerine göre daha fazla azaltığını göstermektedir. Ayrıca diyetle tuz alınmanın azaltılması ile de KB regulasyonu sağlanabilir ve LVH gelişimi azaltabilir 31,32. Hipertansiflerde, koroner arter hastalığı sıklığının sağlıklı bireylere göre beş kat daha yüksek olduğu gösterilmiştir 33,34.

Vasküler Etkiler

üretimindeki azalmaya ek olarak yaşlanmayla NO biyoyararlanmında azalma olduğu gösterilmiştir. Bu azalmanın oksidatif stresteki artışı bağlı olduğu düşünülmektedir.(42)

Renal Etkiler

Renal kitle 30 ve 80 yaş arası % 20-25 oranında azımlaktadır.(43) GFR 30 yaşından sonra her dekatka ortalama % 10 azımlaktadır ve renal vasküler direnç artış ile glomerül sayısıındaki azalma bu duruma katkıda bulunmaktadır. GFR ve glomerül sayısıındaki azalma nedeniyle kalan glomerüllerin kompansatuar olarak boyutlarında artış meydana gelmektedir.(44) Kalan glomerüllerdeki yaşlanmayla ilişkili skleroz, bazal membranda kalınlaşma, glomerüller mezengiumda genişleme, tüberler epitelial transport sisteminde değişiklik meydana geldiği belirtilmiştir.(45) Yıllar içerisinde renal fonksiyonda progresif bir kayıp yaşanabilir fakat bu durum kardiovasküler sistem veya ekstrasellüler sviarda anlamlı değişiklik olana kadar fark edilmeyebilir.(46) Tuza duyarlılık, hipertansiyon, diyabet gibi diğer kardiovasküler risk faktörleri de eklendiği zaman fonksiyon gören nefron kaybı hızlanıyor ve yaşlı bireylerde son dönem böbrek yetmezliği gelişim orani artmaktadır.(47)

Böbrek tarafından su ve tuz tutulumundaki artışın primer hipertansiyona yol açtığı bilinmektedir. Yapılan çalışmalarla, yapışal hasar veya fonksiyon bozukluğuuna bağlı olarak ortaya çıkan intraglomerüler basınç artış sonucunda mikroalbuminüri, hipertansiyonu olan hastalarda siklikla görülen bir bulgudur. Uzun yıllar süren tedavi edilmemis hastalarda, nefrosklerozise bağlı glomerüler filtrasyon hızında azalma ve son dönem böbrek hastalığı gelişmektedir.(48)

Amerika Birleşik Devletlerinde son dönem böbrek yetmezliği nedenleri arasında diabetes mellitustan sonra ikinci sırayı HT almaktadır.(49) Türk Hemodiyaliz, Transplantasyon ve Nefroloji Derneği 2008 Raporuna göre ülkemizde de SDBY nedenleri arasında HT % 26,6 ile ikinci sıradada yer almaktadır.(50)

Hipertansiyona bağlı gelişen böbrek hasarı azalmış böbrek fonksiyonları veya idrarında artış albüm alımına dayanmaktadır. Tüm hipertansiflerde tam idrar tetkikinde idrarında protein araştırılmalıdır. Mikroalbüminürinin yalnızca diyabette değil, diyabeti olmayan bireylerde de artış kardiyovasküler riskle ilişkili olduğu birçok çalışmada gösterilmiştir.(51)
Mikroalbuminüri düzeyi ile HT’nin derecesi ve süresi, hasta yaş, dislipidemi, sigara kullanımı, obezite, insülin direnci, protrombotik eğilimler, RAAS aktivitesinin artışı, endotelyal disfonksiyon ve tuza duyarlılık arasında ilişki olduğu bildirilmiştir(52). HT’lilerin 10 yıllık izleminde, iskemik kalp hastalığı riskinin mikroalbüminürisi olanlarda dört kat arttığı saptanmıştır(53).

Mikroalbuminüri prevalansı esansiyel HT’li non-diyabetiklerde % 10-40 arasında değişir. Prevalansın bu kadar değişmesinin sebebi hipertansiyonun süresi, kan basıncı kontrolünün süresi ve eşlik eden lipid anormallikleridir(54).

Göz Dibi Değişiklikleri
Keith-Wagener sınıflaması ile hipertansif göz dibi değişiklikleri sınıflandırılmıştır.

Evre 1 Fokal veya genel arterioler vazokonstriksiyon

Evre 2 Arteriovenöz çaprazlanma(Gunn Belirtisi)

Evre 3 Hemoraji ve eksüda

Evre 4 Papil ödemi

Serebral Etkiler
Yüksek kan basıncı inme için değiştirilebilir risk faktörleri içinde en önemlisidir(55). Hipertansiyon yaşla birlikte olan kognitif fonksiyonlarda azalmayı hızlandırmaktadır(56). İleri yaş, sigara içiciliği, diyabet öyküsü, yüksek SKB, düşük HDL düzeyi ve EKG anormallikleri iskemik inme riskindeki artış ile önemli ölçüde ilişkidedir. SKB kafa dışı arterlerde ateroskleroza neden olarak, tekrarlayan iskemik atak ve inme için risk faktörüdür(57). Hipertansiflerde inmelerin % 80’i iskemi veya arteryel tromboz ve emboliye, % 15’i intraparankimal, % 5’i subaraknoid kanamaya bağlıdır(58). Hipertansiyonun yol açtığı LVH ile inme arasında ilişki olduğu gösterilmiştir(59).

2.2. Arteryel Sertlik

2.2.1. Tanım
Arteryel sertlik damar duvarının viskoelastik özelliklerini tanımlamak için en sık kullanılan terimdir. Arteryel sertlik; sigara içimi, hiperkolesterolemi, DM, hipertansiyon...
gibi bilinen aterosklerotik risk faktörlerinin artışı ve yaşmanın sonucu olarak meydana gelmekte
dir.\(^60\).

2.2.2. Patofizyoloji

Arteryel sertleşme mekanizması alta yatan nedene bağlı olmaktadır. Uzun süreli hipertansiyon arteryel duvarın yeniden düzenlenmesinde tetiği çekmektedir. Elastik liflerin incelmesi, ayrılmaya, yıpranması ve parçalanması yaşanmanın sonuçlarıdır. İnflamatuvar hastalıklar kollajen ve elastinin kollejenazlarla yıkımı, metalloproteinazlar, elastazlar, endotelyal disfonksiyon, proteoglikan yapısı değişimi ve medial kalsifikasyon ile ilişkilidir. Kollajen gibi uzun ömürlü proteinler arasında geri dönüşümsüz çapraz bağlar oluşmasına yol açan non-enzimatik protein glikasyonu sonucu oluşan ileri glikasyon ürünleri (advanced glication end products-AGEs) de arteryel sertliğe ve nabız basıncında artışa neden olmaktadır\(^63\). AGE’lerin bağlı olduğu kollajen daha sert ve hidrostatik dönüşümde daha dayanıklıdır. Bu da yapısal olarak uygun olmayan kollajen moleküllerinin birikimine yol açar. Benzer şekilde, elastin molekülleri de AGE’lere hassaslar ve damar duvarının elastik matriksinin azalmasına yol açar\(^64\). AGE’ler nitrik oksit oluşumunu bozarak ve peroksinitrit gibi oksidan ürünlerin oluşumunu artırmak ve endotel fonksiyonlarını etkilemektedir\(^65\).
Vasküler sertlik, damar duvarının yapısal ve hücresel elemanlarını içeren stabil ve dinamik değişikliklerinin kompleks etkileşimi ile gelişir. Bu vasküler değişiklikler hormonlar, tuz ve glukoz kontrolü gibi ekstrensek faktörlerden ve hemodinamik kuvvetlerden etkilenir. Sertlik vasküler dallanma boyunca homojen bir şekilde dağılmalı, sıkılıkla bölgeseldir ve hem santral hem de iletiçi damarlarda oluşur\(^{(66)}\).

Damar duvarında lipid birikiminin ve aterosklerotik lezyonların gelişiminin tek başına damar sertliğine katkıda bulunup bulunmadığı net değildir. İzole hiperkolesterolemili genç bireylerde arteryel komplians normal ve hatta bazen artmıştır. Yaşla birlikte endotel disfonksiyona yol açması sebebiyle düşük dansiteli lipoprotein (LDL) kolesterol ile arteryel kompliyans arasında negatif bir ilişki olmaktadır. Sertlik ve ateroskleroz arasındaki sebep-sonuç ilişkisi net değildir\(^{(67)}\).

2.2.3. Moleküler Belirteçler

Arteryel media tabakası düz kas hücreleri ve ekstraselüler matriksden meydana gelir. Arteryel duvarın yapısal bütünlüğü ve esnekliği iki major iskelet proteninden, kollajen ve elastinden meydana gelmektedir. Bu yapıların yavaş fakat düzenli olarak yapımı ve yıkımı sayesinde elastin ve kollajenin miktarı belirli bir düzeyde stabil kalır. Bu dengenin başta inflamasyon olmak üzere değişik sebeplerle bozulması anormal kollajenin aşırı üretimine ve normal elastinin oranının azalmasına yol açar, bu da arteryel sertliğe katkıda bulunur\(^{(68)}\).

Lümen içi basınç artışını veya HT de aşırı kollajen üretimine yol açar. Vasküler örneklerin patolojik incelemesinde bu moleküler değişikliğe bağlı olarak 20-90 yaş arasında intima-media kalınlığı 2-3 kat kadar artmaktadır\(^{(69)}\).

Esansiyel hipertansiyonda gözlenen uzun süreli kan basıncı yüksekliği arteryel duvar hipertrofisi gelişimi için tetikleyicidir. Fizik kurallarına göre duvar kalınlığında meydana gelen herhangi bir artış arteryel sertlikte artışa sebep olmalıdır. Şaşırtıcı olarak hipertansiyonu olan hastalardaki hipertrofi duvar materyalindeki sertlikte (Young’s elastic modulus) bir düşüşe eşlik etmektedir\(^{(70)}\). Wistar-kyoto ratları ile SHR ve SHR-SP ratları karotis arter ve abdominal aort analizleri ile karşılaştırıldığında da benzer bulgular elde edilmiştir\(^{(71)}\). Esansiyel hipertansiyonu hastalarda ve hipertansiyonu rat modellerinde hipertansiyonun indüklediği damar kalınlaması arteryel sertlikte artış ile ilişkili değildir.
Düz kas hücreleri gerilimin aktarılmasını kontraksiyon sırasında kollajen üzerinden, relaksasyon sırasında elastik lamel üzerinden gerçekleştirmektedir. Mekanik gerilim elastik lamel fenestrasyon bölgelerine yakın yoğunlaşmıştır\(^{(72)}\). Mikroskopik incelemede internal elastik lamina fenestrasyonlarıyla kaplanan alanın oranının ve ortalama fenestrasyon alanının Wistar-Kyoto ratlarına kıyasla SHR-SP ve SHR ratlarında daha küçük olduğu gösterilmiştir\(^{(71)}\). Böylece internal elastik lamina içinde gerilim konsantrasyonunda azalma, elastin ağı ortalamada duvar geriliminde artışa karşı koruyan bir mekanizmayı temsil etmektedir.

Arteryel sertlik yapısında değişikliklerden olduğu kadar endotel hücre etkileşiminden ve VDKH tonusundan etkilenmektedir. VDKH tonusu hücre gerilmesi ve kalsiyum sinyali aracılığı ile mekanostimülasyon ve anjiyotensin II, endotelin, oksidan stress ve nitrik oksid gibi parakrin mediatörlerden etkilenmektedir. Endotel disfonksiyonu klinik olarak asetilkoline vazodilatasyon yanıtının bozulmuş olduğunu saptanması ile ortaya konur. Bu bozulmanın sebebi NO üretiminde bir azalma, nitrik oksit sentaz inhibitörlerinde artış veya stres, hormonlar veya AGE’ler sonucu oluşan reaktif oksijen radikallerinde artış olabilmektedir\(^{(73)}\).

2.2.4. Temel Prensipler

az % 60’ında, yaşlı kadınlardır ise% 50’sinde bir veya daha fazla hedef organ hasarı olduğu saptanmıştır(77).

Santral kan basıncı; aort ve ana karotis arterler gibi santral arterlerde ölçülen SKB veya nabız basıncıdır. Serebral kan akımını sağlayan santral kan basıncındaki yükselme büyük ve küçük serebral arter remodelinginde, inme riskinde artışta ana faktördür. Sol ventrikülde artış, miyokardiyal doku perfüzyonunda azalma ve birlikte sol ventrikül kitesinde artış ile ilişkilidir. Diyastol boyunca azalış koroner arter perfüzyon basıncı miyokard enfarktis riskini artırmaktadır.

2.2.5. Arteryel Sertlikte Nöroendokrin Hormonlar ve Tuz

Diyet tuzu yaşla birlikte vasküler sertliği artırır ve yaşlılarda sodyumdan düşük diyetler arteryel kompliansı düzeltmektedir(81). NaCl’ye yanıt olarak VDKH tonusu artmakta ve VDKH hipertrofisini ve anormal kollajen ve elastin üretimine yol açarak damar media tabakasında kalınlaşma yol açmaktadır(82). Tuz alımı anjiyotensin tip I reseptörleri, NO ve aldosteron sentaz genlerinin genetik polimorfizmeleri ile etkileşmektedir. Sodyum ayrıca NOS aktivitesini azaltarak ve NADPH oksidaz aktivitesini azaltarak NO üretimini azaltmaktadır(83).

2.2.6. Arteryel Sertlikte Glukoz ve İnsülin

Diabetes mellitusu ve metabolik sendromu olan hastalarda arteryel sertlik tüm yaş gruplarında gözlenmektedir. Örneğin metabolik sendromlu çocuklarda immer arteryel sertlik ve anormal endotel reaktivitesi çoğunlukla mevcut olmaktadır(84). Bu durumlarda temel etkenin insülin direnci olduğu düşünülmektedir ve insülin direnci ile santral arteryel sertliğin doğru orantılı olduğu bilinmektedir(85). Kronik hiperglisemi ve
hiperinsülinemi renin anjiyotensin aldosteron sisteminin lokal aktivitesini ve damar dokusunda anjiyotensin tip I reseptör sunumunu artırır, damar duvarı hipertrofisine ve fibrozise yol açar\(^{(86)}\). Hiperinsülineminin kendisi de proliferatif etkilere sahiptir. Bozulmuş glukoz toleransı kollajen ile çapraz bağlar olusturan proteinlerin nonenzimatik glikasyonlarını arttırır ve arter duvarının interstisyel dokusunun mekanik özelliklerini değiştirir\(^{(87)}\). Metabolik sendromda damar sertliği diyabetin varlığından çok insülin direncine bağlı oluşan metabolik ve hormonal anormalliklere bağlıdır.

2.2.7. Arteryel Sertliği Saptamada Kullanılan Non-invaziv Yöntemler

1) Nabız dalga hızı ölçümleri

Nabız dalga hızı; her kardiyak siklusta aort ve büyük arterler boyunca ilerleyen basınç dalga şekli hızıdır. Arteryel sertlık için altın standarttır. Arteryel sertliğin ölçümünde kullanılan en basit ve güçlü noninvaziv yöntemdir. Bölgesel arteryel sertlik hakkında bilgi verir. Aort sertliği ana karotis arterden ana femoral artere ilerleyen NDH ile hesaplanır, karotis-femoral NDH adını alır. Mesafe (D) iki kayıt bölgesi arası yüzey mesafesi (sağ karotis ve sağ femoral arter ölçüm noktaları arasındaki mesafe) olarak alınır. \(\Delta t\) (geçiş süresi) iki dalga şekli (sağ karotisten alınan dalga ile sağ femoral arterden alınan dalga) arasındaki süredir\(^{(88)}\).

\[
NDH = \frac{D}{\Delta t} \text{saniye}
\]

Şekil 4. Karotis-femoral NDH’nin ayaktan ayağa yöntemiyle ölçülmesi

2) Basınca karşı arterin çapı ve alanındaki değişimler

Sistolde ve diastolde oluşan damar çapı ve alanındaki değişimlerin değerlendirilmesi o kesitteki arteryel sertlik hakkında bilgi verir ve lokal arteryel sertliğin değerlendirilmesinde kullanılır. Bu ölçümlerin yapılmasında tüm iki sertliğin değerlendirilmesinde manyetik rezonans görüntüleme de kullanılabilmektedir (90).

[Diagram]

A) Lümen kesitsel alanında atım değişikliğinin ΔA şematik gösterimi B) KB ve çapta atım değişikliklerinin eşzamanlı kaydı

Şekil 5.
β sertlik indeksi \(\ln(\text{SKB}/\text{DKB}) / (\Delta D/\text{Dd}) \) formülü ile hesaplanmaktadır. Bu formülde \(\Delta D \) sistolik çapdan diastolik çapın çıkartılması ile hesaplanmaktadır. \(\text{Dd} \) ile diastolik çap ifade edilmektedir. Distensibilite basınçla çapta meydana gelen relatif değişikliktir, komplians basınçla çapta meydana gelen mutlak değişiklikdir. Bu parametreler kullanılarak arterlerin elastik özelliklerinin hesaplandığı modulardan biri olan “Young’s modulus” (Young’ın katsayısı), distensibilite parametrelerine arter intima media kalınlığı faktörünün de katılması ile hesaplanmaktadır. Bir diğer olan “Peterson’s elastic modulus” (Peterson’ın esneklik katsayısı) ise distensibilitenin tersidir ve çapta % 100 artış için gerekli olan basınç değişiminin ifade eder\(^{(91)}\).

3) Arteryel basınç dalga şeklinin değerlendirilmesi

![Şekil 6. Nabız basınç dalga şekli](image-url)
Her ne kadar aort sertliği kardiyovasküler olayları öngörmede oldukça yararlı bilgiler sağlasa da tedavi altındaKV olay gelismimindeki azalmanın sertlik ile ilişkisi kesin olarak ortaya konmamıştır. NDH ve/veya NB’ndaki azalmanın klasik kardiyovasküler risk faktörlerindeki düzelmeden bağımsız olarakKV olaylarda azalmaya yol açıp açmadığının kesin olarak belirlenmesi gerekmektedir(90).

2.3. D Vitamini

D vitamini yetersizliği dünya nüfusunun hemen hemen % 50’sini etkilemektedir. Bu durum başlıca yaşam tarzına ve güneş ışığına maruz kalmayı azaltacak çevresel faktörlerle bağlantılılmaktadır(93). Tedavi edilmiş esansiyel hipertansiyonu olan 18 hastadan oluşan küçük bir çalışmada yüksek UVB’nin indüklediği D vitamininin üretiminin düşük kan basıncı ile ilişkili olduğu hipoteze öne sürülmüştür. Araştırmacılar 6 hafta boyunca haftada üç kez uygulanan UVB tedavisi sonrası sistolik ve diyastolik kan basıncında 6 mmHg düşüş tespit etmişlerdir. UVB tedavisi 25(OH)D konsantrasyonlarında % 162’lik bir artış ile de ilişkilendirilmiştir(94). Hipovitaminoz D genel populasyondaki total mortalite için bağımsız bir risk faktörüdür(95).

2.3.1. D Vitamini Metabolizması

Renal 1α–hidroksilaz enzimi böbrekte serum Ca ve PTH tarafından güçlü bir şekilde regüle edilebiliği gibi, 1,25(OH)2D’nin geri bildirim yolu ile de regüle

2.3.2. 25(OH)D

D vitamini eksikliğinin ve yetersizliğinin sınırlarının tam olarak kaç olması gerektiğini konusunda görüş birliği olmamakla birlikte; ≤ 10 ng/ml ciddi eksiklik, 10-20 ng/ml arasında eksiklik, 21-29 ng/ml arasında yetersiz, ≥ 30 ng/ml yeterli düzey ve ≥ 150 ng/ml toksik düzey olarak kabul gören sınırlardır. Bu sınıflama tablo 4’de gösterilmiştir. 25(OH)D 30 ng/ml (75 nmol/L) düzeyinin yeterli kabul edilmesinin nedeni, intestinal kalsiyum absorbsiyonu D vitamini bu düzeyleri altında azalıyor olması, D vitaminiin 30 ng/ml altında olduğunda paratiroid hormon düzeyinin artıyor olması ve birçok çalışmada D vitamini replasmanın pozitif etkileri 30 ng/ml üzerinde çıkıyor olmasıdır (103).

<table>
<thead>
<tr>
<th>Serum 25-Hidroksivitamin D (ng/ml)</th>
<th>Vitamin D düzeyleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10</td>
<td>Ciddi eksiklik</td>
</tr>
<tr>
<td>10-20</td>
<td>Eksiklik</td>
</tr>
<tr>
<td>21-29</td>
<td>Yetersiz</td>
</tr>
<tr>
<td>≥ 30</td>
<td>Yeterli</td>
</tr>
<tr>
<td>>150</td>
<td>Toksik</td>
</tr>
</tbody>
</table>
2.3.3. D Vitamini ve Kan Basıncı

Hipertansiyonu olan kişilerde renin aktivasyonu ile 1,25(OH)₂D düzeyleri arasında ters bir ilişki bulunmuştur(105). D vitamini, 1,25(OH)₂D veya D vitamini analoqları ile tedavi sonrası RAAS aktivasyonunun incelendiği birkaç çalışmada renin ve anjiyotensin II düzeylerinde düşüş tespit edilmiştir(106,107).

2.3.4. D Vitamini, Kalsiyum ve Paratiroid Hormon

PTH kemik ve böbrekler üzerine direkt olarak, gastrointestinal traktus üzerine indirekt olarak etki gösterir. PTH'un kemik üzerine direk etkisi de söz konusudur; renal 1α-hidroksilaz aktivitesini arttıracak 25(OH)D’yi 1,25(OH)₂D’ye dönüştürmek suretiyle kemikten kalsiyumun salınımını artırır. D vitamini üzerinden intestinal kalsiyum emilimini de stimule eder(93,108). Sağlıklı bireylerde intravenöz PTH infüzyonu kan basıncı yükselmesine neden olmaktadır(109).

2.3.5. D Vitamininin Damar Duvarına Etkisi

D vitamini ve analoqları VDR ve 1α-hidoksilaz ekspresyonu sayesinde endotelyal hücrelere, vasküler düz kas hücrelerine ve makrofajlara etki etmektedir(93,110). SHR’lerde 1,25(OH)₂D endotelyal hücrelerdeki sitozolik serbest kalsiyum konsantrasyonlarının azalmasını sağlayarak aortun endotel bağlı kontraksiyonunu azaltmıştır(111).

D vitamini diyabetik veya üremik hastalarda artan ileri glikasyon ürününün zararlı etkilerine karşı endotelyal hücreleri korumaktadır. D vitamini
vasküloprotektif etkisini endotelyal adezyon moleküllerini azaltarak, endotelyal NOS aktivitesini arttırarak ve anti inflamatuar etkisi vasitasıyla ortaya koymaktadır. Bu bulgularla D vitamini eksikliği endotelyal disfonksiyonla ilişkilidir. Vitamin D’nin vazodilatatör ve anti aterosklerotik etkileri sahip olduğu görüşünü destekleyen çalışmalardan 1,25(OH)\(_2\)D aracılığıyla artmış prostasiklin üretimi raporlanmış (114). Başka çalışmalar ayrıca göstermiştir ki 1,25(OH)\(_2\)D vazokonsriktörlerin sensitivitesini arttırarak vasküler direnci artırabilir. 1,25(OH)\(_2\)D’nin vasküler direnci artırdığı hayvan çalışmalarıyla desteklenmiştir (115).

2.3.6. Diğer Mekanizmalar

Podosit kaybının ve podosit hipertrofisinin azaltılması veya mezengial hücre proliferasyonunun suprese edilmesi gibi D vitaminin renoprotektif etkileri arteryel hipertansiyon gelişimine karşı etki gösterebilir (122,123).

2.3.7. D Vitamini ve Periferik Arteryel Kalsifikasyon

Arteryel kalsifikasyonun iki farklı paterni mevcuttur: Medyanın kalsifikasyonu (yaşlılarda, diyabetiklerde, kronik böbrek yetmezliğinde görülen Monckeberg’s...
sklerozu) ve intimanın kalsifikasyonu (aterosklerozda görülen). Koroner arter ve arkus aorta kalsifikasyonunda prognostik anlamı olan intimal kalsifikasyona dikkat edilmelidir\(^{(124)}\). Yaşıla birlikte artan arteryel kalsiyumun büyük kısmı medial tabakada yoğunlaşmaktadır\(^{(125)}\). Medial kalsifikasyon genellikle oklüzif ya da aterosklerotik plakla ilişkili değildir, fakat yine de alt ekstremite amputasyonları ve kardiyovasküler mortalite için prediktördür\(^{(126)}\). 1,25(OH)\(_2\)D düzeyleri ve total koroner arter kalsifikasyonu (intimal ve medial) arasında ters bir ilişki olduğu yayılanmıştır\(^{(127)}\). D vitamininin değerlendirilmesinde 25(OH)D düzeyi daha iyi bir göstergeydi\(^{(128)}\). D vitamininin antihipertansif etkileri şekil 7'de özetlenmiştir.

Şekil 7. D vitamininin antihipertansif etkileri

2.4. **Paratiroid Hormon (PTH, Parathormon)**

PTH, paratiroit bezleri içinde devamlı olarak sentez edilip salverilen bir polipeptit hormondur. PTH, insan, sığır, domuz ve tavukta 84 aminoasitten kuruluştur; N-ucu alaninle başlar ve C-ucu glutaminle bitmektedir. Moleküldeki ilk 1-29 veya 1-34 aminoasit, biyolojik aktiviteden sorumlu; sonraki 50 aminoasitlik kısımda, periferik dokularda yıkılma ve inaktivasyonun geçtirilmesinden sorumludur. PTH, ilk olarak N-ucuna yapışık ve çoğu hidrofobik 31 ekstra aminoasitli bir öncül sıralamadan oluşan preproparathormon olarak, paratiroitlerin asıl hücrelerinde sentez edilmektedir. Preproparathormon, endoplazmik retikulum içinde, birkaç dakikada 90
aminoasit kalıntısı içeren proparathormona çevrilmektedir. Proparathormon da golgi aygıtında PTH’a hidrolize olmaktadır.

2.4.1. PTH Salıverilişinin Kontrolü

PTH, insan paratiroit bezinde depo edilmez; sentezlenir ve salıverilir. PTH salıverilişi, plazma iyonize kalsiyum düzeyi ile ilişkili bir negatif feedback mekanizması ile kontrol edilmektedir. Plazmada iyonize kalsiyum düzeyi düşünce PTH salıverilişi artar; plazmada iyonize kalsiyum düzeyi yükselseince PTH salıverilişi azalır. Plazma fosfat düzeyinde değişiklik, PTH salıverilişi üzerine herhangi bir etkiye sahip değildir. Yüksek konsantrasyonda 1,25 dihidroksi koleksiferol, PTH sentez ve salıverilişini basturabilir. Hipofiz ve hipotalamusun, PTH salıverilişi üzerine etkisi yoktur.

2.4.2. Etkileri

PTH, cAMP üzerinden, kemik ve böbrekler üzerine direkt olarak, gastrointestinal traktus üzerine indirekt olarak etki gösterir. PTH etkisiyle, plazmada kalsiyum artar fosfat azalır; idrarda ise kalsiyum azalır fosfat artar. PTH’nin kemik üzerine direkt etkisi, prekürsör hücrelerin osteoblast ve osteoklastlara olgunlaşmasını, osteositik ve osteoklastik osteolizisi artırmak ve kollajen sentezini inhibe etmektir. PTH’nin kemik üzerine indirekt etkisi de söz konusudur; D vitamininin böbrekte aktifleşmesini sağlamak suretiyle kemikten kalsiyum mobilizasyonunu artırır. PTH’un kemik üzerine etkisiyle kemikten kalsiyum açığa çıkış yani kemik rezorpsiyonu hızlanır. PTH’un böbrekler üzerine direkt etkisi, distal tubuluslardan kalsiyum ve magnezyum geri emilimini, böbreklerden potasyum, fosfat ve bikarbonat atılımını, böbreklerde aktif vitamin D3 oluşumunu artırarak; ayrıca H⁺ ve NH4⁺ atılımını azaltır.

PTH’un gastrointestinal kanal üzerine etkisi indirekttir. PTH böbreklerde aktif D vitamini oluşumunu artırır; aktif D vitamini de intestinal mukoza hücreleri tarafından kalsiyum ve fosfor emilimini artırır.
3. GEREÇ VE YÖNTEMLER

Bu çalışmaya Çukurova Üniversitesi Tıp Fakültesi Balcalı Hastanesi Hipertansiyon polikliniğine ve diğer polikliniklere başvuran bilinen primer HT tanısı olan ve antihipertansif ajan kullanan 65 yaş ve üzeri hasta yazılı onam formları alındıktan sonra dahil edildi. Çalışmaya kontrol grubu olarak kronik hiçbir hastalığı olmayan ve ilaç kullanmayan 65 yaş ve üzeri 10 hasta dahil edildi. Çalışma için Çukurova Üniversitesi Tıp Fakültesi Etik Kurul onayı alındı. Çalışmada dışlanma kriterleri: bilinen periferik arter ve koroner arter hastalığı, diyabeti, kalp yetersizliği, böbrek yetersizliği, karaciğer yetersizliği, paratiroid ile ilgili hastalığı, eşlik eden başka sistemik hastalığı, D vitamini tedavisi, kalsiyum tedavisi almakta olduğu bilinen hastalar olarak belirlendi.

Çalışmaya dahil olan tüm hastaların yaş, cinsiyet, hiperlipidemi, sigara kullanımı, ailede kalp hastalığı öyküsü gibi risk faktörleri, diyet uyumu, düzenli egzersiz yapmadıkları, kullandıkları ilaçları sorgulandi, anamnezleri alındı, genel fizik muayenesi yapıldı, nabız ve arteriyel kan basınçları kaydedildi, elektrokardiyografisi çekildi. Hastaların boy ve kiloları ölçülerek vücut kitle indeksi (VKİ), ağırlık (kg)/boy (m²) formülü ile hesaplandı. Göbek hattı üzerinden geçecek şekilde bel çevresi ölçüldü. Nabız sayıları bir dakika boyunca sayılarak kayıt edildi.

Hastalardan serum 25(OH)D düzeylerinin tespiti için kan örnekleri alındı. Serum 25(OH)D seviyeleri Shimadzu LC 20AD/T serisi (Kyoto, Japan) HPLC cihazında kromatografik yöntemle ölçüldü. EDTA’lı tüplere alınan kanlar 3000 rpm’de 5 dakika santrifüj edildi. Daha sonra plazmalar ayrıldı. Analiz yapılmak üzere kadar -20º de saklandı. Analiz günü oda ısısında erimeye bırakıldı. Sonuçlar ng/ml cinsinden ölçüldü. Hastalardan alınan kan örneklerinde kreatinin, iyonize kalsiyum, kalsiyum, inorganik fosfor, HDL, LDL, trigliserid, total kolesterol, glukoz, insülin, PTH çalışıldı. PTH düzeyine Roche/Hitachi Modular Analytics sistemde elektrokemilüminesans immünolojik test yöntemi ile bakıldı. İnsülin direnci HOMA-IR formülü kullanılarak hesaplandı. (HOMA-IR = Açlık insülin düzeyi μU/ml × Açlık glukoz düzeyi mg/dl/ 405). Hastalardan toplanılan 24 saatlik idrar örneklerinde sodyum, kalsiyum, fosfor ve albumin ölçümleri yapıldı. MDRD formülü ile GFR hesaplandı. GFR= 186 x (Cr)^-1.154 x
(Yaş)^{-0.203} formülü kullanıldı ve kadın hastalar için sonuç 0,742 ile çarpılarak değerlendirildi.

Tüm hastalara istirahat halinde, 45° sol yan dekubitus pozisyonunda Acuson Sequoia C 256 model cihaz (Acuson Corporation, Mountain View, CA, USA) ve 3,5 mHZ prob kullanılarak ekokardiyografik inceleme yapıldı. Standart M-mode ölçümleri, Amerikan Ekokardiyografi Cemiyeti’nin önerilerine göre yapıldı, sistolik ve diyastolik çaplar ve interventriküler septum kalınlığı ile posteriyor duvar kalınlığı ölçüldü, EF’leri hesaplandı.

İstatistiksel Analiz

Verilerin istatistiksel analizinde SPSS 19.0 paket programı kullanılarak çalışmanın istatistiksel analizi Çukurova Tıp Fakültesi Biyoistatistik Anabilim Dalı’nda yapıldı. Kategorik ölçümler sayı ve yüzde olarak, sayısal ölçümlerse ortalama ve standart sapma (gerekli yerlerde ortanca ve minimum - maksimum) olarak özetlendi. Kategorik ölçümlerin gruplar arasında karşılaştırılmasında Ki Kare test istatistiği kullanıldı. Gruplar arasında sayısal ölçümlerin karşılaştırılmasında Bağımsız gruplarda T testi kullanıldı. İkiden fazla grubun sayısal ölçümlerinin genel karşılaştırılmasında Tek Yönlü Varyans Analizi kullanıldı. Sayısal ölçümlerin birbirleri arasındaki etkileşimi incelemek için Pearson Korelasyon katsayısı ve ilgili p değeri elde edildi. Tüm testlerde istatistiksel önem düzeyi p<0.05 olarak alındı.
4. BULGULAR

Çalışmaya 65 yaş ve üzeri 38’i erkek, 61’i kadın olmak üzere antihipertansif tedavi altında olan toplam 99 hipertansif kişi alındı. Çalışmaya kontrol grubu olarak hipertansiyonu ve kronik herhangi bir hastalığı bulunmayan 65 yaş ve üzeri 4’ü erkek, 6’sı kadın olmak üzere 10 kişi alındı. Çalışmaya alınan hasta ve kontrol grubundaki kişilerin demografik ve laboratuvar özelliklerinin karşılaştırılması tablo 5’de verilmiştir. Çalışmaya alınan hasta grubunun yaş ortalaması 71,09±5,16, vitamin D ortalaması 11,41±6,59 ng/ml, PTH ortalaması 43,49±20,75 pg/ml idi. Hasta grubu ve kontrol grubu arasında SKB, DKB, iyonize kalsiyum, glukoz, kalsiyum, fosfor, PTH düzeyleri arasında anlamlı farklılık saptandı. SKB, DKB düzeyleri (p değerleri sırasıyla 0,001, 0,001) hasta grubunda anlamlı olarak daha yüksek saptandı. Glukoz, kalsiyum, fosfor ve PTH düzeyleri (p değerleri sırasıyla 0,002, 0,028, 0,003, 0,030) kontrol grubunda anlamlı olarak daha yüksek saptandı.

Tablo 5. Hasta ve Kontrol Grubu Demografik ve Laboratuvar Özellikleri

<table>
<thead>
<tr>
<th></th>
<th>Hasta Grubu</th>
<th></th>
<th>Kontrol Grubu</th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ort. ± SD</td>
<td>(n=99)</td>
<td>Ort. ± SD</td>
<td>(n=10)</td>
<td></td>
</tr>
<tr>
<td>Yaş</td>
<td>71,09±5,16</td>
<td>(65-84)</td>
<td>71,8±5,5</td>
<td>(65-82)</td>
<td>0,740</td>
</tr>
<tr>
<td>SKB mmHg</td>
<td>123,4±9,4</td>
<td>(100-138)</td>
<td>109,5±6,5</td>
<td>(100-120)</td>
<td>0,001</td>
</tr>
<tr>
<td>DKB mmHg</td>
<td>70,9±8,09</td>
<td>(50-88)</td>
<td>62,7±4,1</td>
<td>(57-70)</td>
<td>0,001</td>
</tr>
<tr>
<td>NB</td>
<td>52,6±11,07</td>
<td>(28-78)</td>
<td>46,8±7,7</td>
<td>(36-58)</td>
<td>0,088</td>
</tr>
<tr>
<td>B indeks</td>
<td>7,19±3,58</td>
<td>(2,8-22,5)</td>
<td>5,94±1,58</td>
<td>(4,1-9,5)</td>
<td>0,321</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1,05±0,73</td>
<td>(0,2-4,1)</td>
<td>1,62±1,19</td>
<td>(0,3-4,4)</td>
<td>0,098</td>
</tr>
<tr>
<td>VKI</td>
<td>28,1±4,06</td>
<td>(21,3-42,9)</td>
<td>29±2,7</td>
<td>(24,6-33)</td>
<td>0,191</td>
</tr>
<tr>
<td>Glukoz mg/dl</td>
<td>75,5±16,1</td>
<td>(44-121)</td>
<td>99,5±26</td>
<td>(73-149)</td>
<td>0,002</td>
</tr>
<tr>
<td>Cr mg/dl</td>
<td>0,65±0,25</td>
<td>(0,45-1,5)</td>
<td>0,69±0,1</td>
<td>(0,5-1,0)</td>
<td>0,308</td>
</tr>
<tr>
<td>Ca mg/dl</td>
<td>7,8±1,11</td>
<td>(6,3-9,8)</td>
<td>8,67±0,44</td>
<td>(8-9,3)</td>
<td>0,028</td>
</tr>
<tr>
<td>P mg/dl</td>
<td>3,03±1,1</td>
<td>(1,7-10,3)</td>
<td>3,52±0,56</td>
<td>(2,6-4,7)</td>
<td>0,003</td>
</tr>
<tr>
<td>T.kol mg/dl</td>
<td>145,9±47,5</td>
<td>(53-316)</td>
<td>155,2±38,4</td>
<td>(95-211)</td>
<td>0,347</td>
</tr>
<tr>
<td>HDL mg/dl</td>
<td>32,1±9,7</td>
<td>(12,4-60,1)</td>
<td>37,5±11,8</td>
<td>(22,8-56,1)</td>
<td>0,191</td>
</tr>
<tr>
<td>Trig. mg/dl</td>
<td>110,8±67,5</td>
<td>(31-442)</td>
<td>104,8±30,4</td>
<td>(66-152)</td>
<td>0,729</td>
</tr>
<tr>
<td>LDL mg/dl</td>
<td>92,6±33,9</td>
<td>(27-210)</td>
<td>96,7±33,7</td>
<td>(49-141)</td>
<td>0,600</td>
</tr>
<tr>
<td>PTH pg/ml</td>
<td>43,4±20,7</td>
<td>(9-109)</td>
<td>61,4±27</td>
<td>(35-114)</td>
<td>0,030</td>
</tr>
<tr>
<td>25(OH)D ng/ml</td>
<td>11,4±6,5</td>
<td>(4-30)</td>
<td>10±5,5</td>
<td>(4-21)</td>
<td>0,610</td>
</tr>
<tr>
<td>MDRD ml/dk</td>
<td>92±17,5</td>
<td>(35-135)</td>
<td>89,8±5,5</td>
<td>(79-97)</td>
<td>0,221</td>
</tr>
</tbody>
</table>

Çalışma grubu orta derecede (Grup 0) ve yüksek derecede (Grup 1) kardiyovasküler ek riski olanlar olmak üzere iki gruba ayrıldı. İki grubun laboratuvar ve demografik özelliklerinin karşılaştırılması tablo 6’da verilmiştir. İki grubun demografik ve laboratuvar özellikleri arasında SKB, NB, β indeks düzeyleri dışında istatistiksel

30
olarak anlamlı bir farklılık yoktu. Orta derecede kardiyovasküler ek risk grubuna göre yüksek derecede ek riski olan grupta SKB, NB, β indeks düzeyleri (p değerleri sırasıyla p<0,001, p<0,001, p<0,037) anlamlı olarak daha yüksek saptandı.

| Tablo 6. Kardiyovasküler Risk Gruplarına Göre Hastaların Karşılaştırılması |
|-----------------------------|---|---|---|---|
| Yağ | Grup 1: Orta derecede kardiyovasküler risk | Grup 1: Yüksek derecede kardiyovasküler risk |

<table>
<thead>
<tr>
<th>Hasta Grubu</th>
<th>n</th>
<th>Ort.</th>
<th>SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAŞ</td>
<td>0</td>
<td>66</td>
<td>71,3</td>
<td>5,4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>70,6</td>
<td>4,5</td>
</tr>
<tr>
<td>SKB</td>
<td>0</td>
<td>66</td>
<td>118,5</td>
<td>7,7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>133,1</td>
<td>2,6</td>
</tr>
<tr>
<td>DKB</td>
<td>0</td>
<td>66</td>
<td>70,3</td>
<td>7,6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>72,2</td>
<td>8,8</td>
</tr>
<tr>
<td>NB</td>
<td>0</td>
<td>66</td>
<td>48,5</td>
<td>9,6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>60,9</td>
<td>8,9</td>
</tr>
<tr>
<td>β index</td>
<td>0</td>
<td>66</td>
<td>6,6</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>8,2</td>
<td>4,2</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0</td>
<td>66</td>
<td>1,1</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>0,95</td>
<td>0,8</td>
</tr>
<tr>
<td>VKI</td>
<td>0</td>
<td>66</td>
<td>28,17</td>
<td>4,52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>28,19</td>
<td>3,01</td>
</tr>
<tr>
<td>L.Ca mmol/l</td>
<td>0</td>
<td>66</td>
<td>0,98</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>1,02</td>
<td>0,12</td>
</tr>
<tr>
<td>Glu mg/dl</td>
<td>0</td>
<td>66</td>
<td>77,4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>71,8</td>
<td>16,1</td>
</tr>
<tr>
<td>Cr mg/dl</td>
<td>0</td>
<td>66</td>
<td>0,65</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>0,65</td>
<td>0,26</td>
</tr>
<tr>
<td>Ca mg/dl</td>
<td>0</td>
<td>66</td>
<td>7,8</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>7,7</td>
<td>1,02</td>
</tr>
<tr>
<td>P mg/dl</td>
<td>0</td>
<td>66</td>
<td>3,02</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>3,06</td>
<td>1,36</td>
</tr>
<tr>
<td>T.K mg/dl</td>
<td>0</td>
<td>66</td>
<td>145,4</td>
<td>50,2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>147</td>
<td>42,4</td>
</tr>
<tr>
<td>HDL mg/dl</td>
<td>0</td>
<td>66</td>
<td>32,9</td>
<td>9,8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>30,4</td>
<td>9,5</td>
</tr>
<tr>
<td>Trg mg/dl</td>
<td>0</td>
<td>66</td>
<td>107,3</td>
<td>65,1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>117,6</td>
<td>72,6</td>
</tr>
<tr>
<td>LDL mg/dl</td>
<td>0</td>
<td>66</td>
<td>92</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>93</td>
<td>32</td>
</tr>
<tr>
<td>PTH pg/ml</td>
<td>0</td>
<td>66</td>
<td>43,4</td>
<td>20,9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>43,6</td>
<td>20,7</td>
</tr>
<tr>
<td>25(OH)D ng/ml</td>
<td>0</td>
<td>66</td>
<td>11,7</td>
<td>6,9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>10,6</td>
<td>5,8</td>
</tr>
<tr>
<td>İdr. P mg</td>
<td>0</td>
<td>66</td>
<td>563,4</td>
<td>357,8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>610,7</td>
<td>414,3</td>
</tr>
<tr>
<td>İdr. Ca mg</td>
<td>0</td>
<td>66</td>
<td>5,4</td>
<td>5,5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>5,5</td>
<td>4,5</td>
</tr>
<tr>
<td>İdr. alb. mg</td>
<td>0</td>
<td>66</td>
<td>12,2</td>
<td>15,2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>45,8</td>
<td>160,7</td>
</tr>
<tr>
<td>İdr. Na mmol</td>
<td>0</td>
<td>66</td>
<td>93,01</td>
<td>46,2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>106,3</td>
<td>46,04</td>
</tr>
</tbody>
</table>
Çalışmaya alınan kişiler vitamin D düzeylerine göre ≤10 ng/ml (Grup 1), >10 ng/ml (Grup 2) olarak iki gruba ayrıldı. Çalışmaya katılan hasta kişiler (n=99) arasındaki grup 1 ve grup 2’nin karşılaştırması tablo 7’de gösterilmiştir. VKİ düzeyleri (p=0,001) grup 1’de anlamlı olarak daha yüksek saptandı. Kreatinin, total kolesterol, HDL düzeyleri (p değerleri sırasıyla 0,009, 0,043, 0,011) grup 2’de anlamlı olarak daha yüksek saptandı.

Tablo 7. Hipertansif Hastaların D Vitamini Düzeylerine Göre Karşılaştırılması

<table>
<thead>
<tr>
<th>Grup</th>
<th>Ort. ± SD</th>
<th>(n=52)</th>
<th>Grup 2</th>
<th>Ort. ± SD</th>
<th>(n=47)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaş</td>
<td>70,6±4,8</td>
<td>(65-84)</td>
<td>71,5±5,5</td>
<td>(65-82)</td>
<td>0,473</td>
<td></td>
</tr>
<tr>
<td>SKB mmHg</td>
<td>123,6±9,7</td>
<td>(100-138)</td>
<td>123,1±9,2</td>
<td>(100-136)</td>
<td>0,819</td>
<td></td>
</tr>
<tr>
<td>DKB mmHg</td>
<td>72±7,8</td>
<td>(55-85)</td>
<td>69,7±8,2</td>
<td>(50-88)</td>
<td>0,183</td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>51,5±11,4</td>
<td>(28-78)</td>
<td>53,9±10,6</td>
<td>(30-75)</td>
<td>0,219</td>
<td></td>
</tr>
<tr>
<td>B indeks</td>
<td>7,2±4,09</td>
<td>(3.2-22,5)</td>
<td>7,1±2,9</td>
<td>(2,8-15,8)</td>
<td>0,556</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1,01±0,62</td>
<td>(0,3-2,9)</td>
<td>1,09±0,85</td>
<td>(0,2-4,1)</td>
<td>0,894</td>
<td></td>
</tr>
<tr>
<td>VKİ</td>
<td>29,4±4,6</td>
<td>(21-42)</td>
<td>26,7±2,7</td>
<td>(23-35)</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>I.Ca mmol/lt</td>
<td>0,98±0,1</td>
<td>(0,71-1,2)</td>
<td>1,01±0,13</td>
<td>(0,73-1,3)</td>
<td>0,416</td>
<td></td>
</tr>
<tr>
<td>Glukoz mg/dl</td>
<td>75±16</td>
<td>(44-120)</td>
<td>75±16,1</td>
<td>(50-121)</td>
<td>0,747</td>
<td></td>
</tr>
<tr>
<td>Cr mg/dl</td>
<td>0,603±0,25</td>
<td>(0,45-1,5)</td>
<td>0,71±0,24</td>
<td>(0,5-1,3)</td>
<td>0,009</td>
<td></td>
</tr>
<tr>
<td>Ca mg/dl</td>
<td>7,6±1,18</td>
<td>(6,3-9,8)</td>
<td>7,9±1,1</td>
<td>(6,3-9,8)</td>
<td>0,207</td>
<td></td>
</tr>
<tr>
<td>P mg/dl</td>
<td>3,102±1,47</td>
<td>(1,7-10,3)</td>
<td>2,96±0,4</td>
<td>(1,8-4,2)</td>
<td>0,191</td>
<td></td>
</tr>
<tr>
<td>T.kol mg/dl</td>
<td>140±50,9</td>
<td>(67-316)</td>
<td>152±43</td>
<td>(53-251)</td>
<td>0,043</td>
<td></td>
</tr>
<tr>
<td>HDL mg/dl</td>
<td>29±9,5</td>
<td>(17-60)</td>
<td>34,4±9,6</td>
<td>(12-58)</td>
<td>0,011</td>
<td></td>
</tr>
<tr>
<td>Trig. mg/dl</td>
<td>113,9±68</td>
<td>(31-386)</td>
<td>107,3±67,3</td>
<td>(32-442)</td>
<td>0,659</td>
<td></td>
</tr>
<tr>
<td>LDL mg/dl</td>
<td>88,5±34,9</td>
<td>(34-210)</td>
<td>97,2±32,5</td>
<td>(27-192)</td>
<td>0,061</td>
<td></td>
</tr>
<tr>
<td>PTH pg/ml</td>
<td>43,8±21,2</td>
<td>(12-109)</td>
<td>43,1±20,4</td>
<td>(9-95)</td>
<td>0,750</td>
<td></td>
</tr>
<tr>
<td>25(OH)D ng/ml</td>
<td>6,4±1,92</td>
<td>(4-10)</td>
<td>16,9±5,39</td>
<td>(10-30)</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>MDRD ml/dk</td>
<td>94,0±15,0</td>
<td>(58-135)</td>
<td>89,4±18,6</td>
<td>(35-120)</td>
<td>0,433</td>
<td></td>
</tr>
</tbody>
</table>

D vitamini düzeyi ≤10 ng/ml altında olan kişiler hasta grubu ve kontrol gruba olarak ikiye ayrıldı. Hasta ve kontrol gruba karşılaştırması tablo 8’de gösterilmiştir.

Kontrol grubunda, kalsiyum, fosfor, glukoz ve HDL düzeyleri (p değerleri sırasıyla 0,022, 0,011, 0,01, 0,022) hasta grupuna göre anlamlı olarak daha yüksek saptandı. Hasta grubunda SKB ve DKB düzeyleri (p değerleri sırasıyla 0,002, 0,001) kontrol grubuna göre anlamlı olarak daha yüksek saptandı.
D vitamini düzeyi >10 ng/ml altında olan kişiler hasta grubu ve kontrol grubu olarak ikiye ayrıldı. Hasta ve kontrol grubu karşılaştırması tablo 9’da gösterilmiştir. SKB düzeyleri (p=0,031) hasta grubunda, VKİ düzeyleri ise kontrol grubunda anlamlı olarak daha yüksek saptandı. Diğer parametreler arasında istatistiksel olarak anlamlı farklılık saptanmadı.
PTH düzeylerine göre tüm gruplar ≤27 pg/ml (Grup 1), >27 pg/ml (Grup 2) iki gruba ayrıldı. İki grup arasındaki karşılaştırma tablo 10’da gösterilmiştir. İki grup arasında PTH düzeylerine göre parametreler arasında istatistiksel olarak anlamlı fakültelik bulunmadı.
Tablo 10. PTH Düzeyi ≤27 pg/ml ile >27 pg/ml Olan Grupların Karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>Grup 1 (n=22)</th>
<th>Grup 2 (n=87)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaş</td>
<td>70,5±5,3</td>
<td>71,3±5,14</td>
<td>0,517</td>
</tr>
<tr>
<td>SKB mmHg</td>
<td>122,7±8,6</td>
<td>121,9±10,4</td>
<td>0,961</td>
</tr>
<tr>
<td>DKB mmHg</td>
<td>70,9±8,1</td>
<td>70±8,1</td>
<td>0,667</td>
</tr>
<tr>
<td>NB</td>
<td>51,8±9,3</td>
<td>52,2±11,3</td>
<td>0,910</td>
</tr>
<tr>
<td>B indeks</td>
<td>7,4±3,47</td>
<td>6,99±3,47</td>
<td>0,459</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0,87±0,63</td>
<td>1,16±0,82</td>
<td>0,115</td>
</tr>
<tr>
<td>VKI</td>
<td>27,9±4,01</td>
<td>28,3±3,96</td>
<td>0,558</td>
</tr>
<tr>
<td>L.Ca mmol/l</td>
<td>0,95±0,19</td>
<td>1,0±0,13</td>
<td>0,621</td>
</tr>
<tr>
<td>Glukoz mg/dl</td>
<td>73,8±16,1</td>
<td>78,7±19</td>
<td>0,301</td>
</tr>
<tr>
<td>Cr mg/dl</td>
<td>0,66±0,34</td>
<td>0,65±0,21</td>
<td>0,415</td>
</tr>
<tr>
<td>Ca mg/dl</td>
<td>7,8±1,2</td>
<td>7,9±1,1</td>
<td>0,751</td>
</tr>
<tr>
<td>P mg/dl</td>
<td>3,5±2,15</td>
<td>2,9±0,53</td>
<td>0,716</td>
</tr>
<tr>
<td>T.kol. mg/dl</td>
<td>142,5±54,8</td>
<td>147,9±44,7</td>
<td>0,330</td>
</tr>
<tr>
<td>HDL mg/dl</td>
<td>30,4±8,4</td>
<td>33,1±10,3</td>
<td>0,340</td>
</tr>
<tr>
<td>Trig. mg/dl</td>
<td>129,6±87,5</td>
<td>105,3±57,4</td>
<td>0,437</td>
</tr>
<tr>
<td>PTH pg/ml</td>
<td>19,9±4,9</td>
<td>51,5±19</td>
<td>0,001</td>
</tr>
<tr>
<td>25(OH)D ng/ml</td>
<td>11,2±6,9</td>
<td>11,2±6,4</td>
<td>0,898</td>
</tr>
<tr>
<td>MDRD ml/dk</td>
<td>92,4±19,2</td>
<td>93,6±15,2</td>
<td>0,426</td>
</tr>
</tbody>
</table>

PTH düzeylerine göre >27 pg/ml olan kişiler hasta ve kontrol grubu olarak iki gruba ayrıldı. İki grup arasındaki karşılaştırma tablo 11’de gösterilmiştir. Glukoz, kalsiyum ve fosfor düzeyleri (p değerleri sırasıyla 0,002, 0,028, 0,002) kontrol grubunda anlamlı olarak daha yüksek saptandı. SKB, DKB, iyonize kalsiyum düzeyleri (p değerleri sırasıyla 0,001, 0,001, 0,019) hasta grubunda anlamlı olarak daha yüksek saptandı. β indeks dahil olmak üzere diğer parametreler arasında istatistiksel olarak anlamlı farklılık saptanmadı.
Tablo 11. PTH Düzeyi >27 pg/ml Olan Hasta ve Kontrol Gruplarının Kaşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>Hasta Grubu</th>
<th></th>
<th>Kontrol Grubu</th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ort. ± SD (n=77)</td>
<td>Ort. ± SD (n=10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaş</td>
<td>72,1±5,1</td>
<td>71,8±5,5</td>
<td>0,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKB mmHg</td>
<td>123,5±9,7</td>
<td>109,5±6,5</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKB mmHg</td>
<td>70,9±8,1</td>
<td>62,7±4,1</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>52,9±11,5</td>
<td>46,8±7,7</td>
<td>0,084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B indeks</td>
<td>7,1±3,6</td>
<td>5,9±1,58</td>
<td>0,387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1,1±0,75</td>
<td>1,6±1,19</td>
<td>0,158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VKI</td>
<td>28,2±4,1</td>
<td>29±2,7</td>
<td>0,221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.Ca mmol/l</td>
<td>1,0±0,13</td>
<td>0,9±0,09</td>
<td>0,019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glukoz mg/dl</td>
<td>7,6±1,2</td>
<td>9,5±0,26</td>
<td>0,002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr mg/dl</td>
<td>0,6±0,22</td>
<td>0,0±0,1</td>
<td>0,331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca mg/dl</td>
<td>7,8±1,11</td>
<td>8,6±0,44</td>
<td>0,028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P mg/dl</td>
<td>2,8±0,48</td>
<td>3,5±0,56</td>
<td>0,002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.kol. mg/dl</td>
<td>146,9±45,6</td>
<td>155,2±38,4</td>
<td>0,421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL mg/dl</td>
<td>32,5±10</td>
<td>37,5±11,8</td>
<td>0,250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trig. mg/dl</td>
<td>105,4±60,2</td>
<td>104,8±30,4</td>
<td>0,594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL mg/dl</td>
<td>94,2±33,4</td>
<td>96,7±33,7</td>
<td>0,685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTH pg/ml</td>
<td>43,4±20,7</td>
<td>61,4±27</td>
<td>0,197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25(OH)D ng/ml</td>
<td>11,4±6,5</td>
<td>10±5,5</td>
<td>0,599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDRD ml/dk</td>
<td>92,8±16,9</td>
<td>86,5±7,7</td>
<td>0,332</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hipertansif hasta grubu içerisinde D vitamini düzeyleri ile cinsiyet arasındaki ilişki tablo 12’de gösterilmiştir. Cinsiyet ile D vitamini düzeyleri arasında istatistiksel olarak anlamılı bir fark saptanmamıştır.

Tablo 12. Hipertansiflerde D Vitamini Düzeleri ile Cinsiyet Karşılaştırılması

<table>
<thead>
<tr>
<th>CINSİYET</th>
<th>N</th>
<th>Ort.</th>
<th>SD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erkek</td>
<td>38</td>
<td>12,3</td>
<td>5,4</td>
<td>0,247</td>
</tr>
<tr>
<td>Kadın</td>
<td>61</td>
<td>10,8</td>
<td>7,1</td>
<td></td>
</tr>
</tbody>
</table>

Çalışma grubundaki hipertansif kişilerin PTH ve 25(OH)D düzeyleriyle arteryal sertlik arasındaki ilişki tablo 13’de gösterilmiştir. PTH ve 25(OH)D düzeyleriyle β indeks değerleri arasında istatistiksel olarak anlamılı bir ilişki saptanmadı.

Tablo 13. Hipertansif Hastalarda PTH ve D Vitamini ile Arteryel Sertlik Arasındaki İlişki

<table>
<thead>
<tr>
<th></th>
<th>Ort. ± SD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTH pg/ml</td>
<td>43,4±20,7</td>
<td>0,901</td>
</tr>
<tr>
<td>25(OH)D ng/ml</td>
<td>11,4±6,5</td>
<td>0,240</td>
</tr>
</tbody>
</table>
Çalışma grubu orta derecede (Grup 0) ve yüksek derecede (Grup 1) kardiyovasküler ek riski olanlar olmak üzere iki gruba ayrıldı. Her grubun PTH ve D vitamini düzeyleri ile arterel sertlik indeksi değerleri arasındaki ilişki istatistiksel olarak anlamalı saptanmadı (Tablo 14).

Tablo 14. Kardiyovasküler Risk Gruplarına Göre D Vitamini ve PTH Düzeyleri ile Arteryel Sertlik Arasındaki İlişki

<table>
<thead>
<tr>
<th>GRUP</th>
<th>Ort. ± SD</th>
<th>ß index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 n=66</td>
<td>PTH pg/ml 43,4±20,9</td>
<td>p=0,980</td>
</tr>
<tr>
<td></td>
<td>25(OH)D ng/ml 11,7±6,9</td>
<td>p=0,251</td>
</tr>
<tr>
<td>1 n=33</td>
<td>PTH pg/ml 43,6±20,7</td>
<td>p=0,867</td>
</tr>
<tr>
<td></td>
<td>25(OH)D ng/ml 10,6±5,8</td>
<td>p=0,797</td>
</tr>
</tbody>
</table>

Hipertansif hastalarda HOMA-IR ve iyonize kalsiyum düzeyleriyle arterel sertlik indeksi değerleri arasında istatistiksel olarak anlamalı bir ilişki saptanmadı (tablo 15).

Tablo 15. Hipertansif Hastalarda HOMA-IR ve Iyonize Kalsiyum Düzeyleriyle Arteryel Sertlik İndeksi Arasındaki İlişki

<table>
<thead>
<tr>
<th></th>
<th>Ort. ± SD</th>
<th>ß indeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMA-IR</td>
<td>1,05±0,73</td>
<td>p=0,392</td>
</tr>
<tr>
<td>Iyonize kalsiyum</td>
<td>1,0±0,15</td>
<td>p=0,051</td>
</tr>
</tbody>
</table>

Hipertansif hastalar sigara içiciliği durumlarına göre üç gruba ayrıldı. Hiç sigara içmemiş olanlar grub 0, sigarayı bırakmış olanlar grub 1, güne 10 adet ve daha az içenler grup 2 olarak adlandırıldı. Gruplar arasında vitamin D ve PTH düzeyleri ile sigara içiciliği arasında istatistiksel olarak anlamalı bir ilişki saptanmadı (Tablo 16).
Tablo 16. PTH ve 25(OH)D Düzeyleri ile Sigara Arasındaki İlişki

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Ort. ±SD</th>
<th>Min-Max</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTH pg/ml</td>
<td>0</td>
<td>72</td>
<td>44±20,1</td>
<td>9-95,9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>16</td>
<td>37,9±15,8</td>
<td>13,9-79,5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11</td>
<td>48±29,9</td>
<td>12,2-109</td>
</tr>
<tr>
<td>25(OH)D ng/ml</td>
<td>0</td>
<td>72</td>
<td>11,1±6,8</td>
<td>4-30</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>16</td>
<td>13,4±6,8</td>
<td>4-26</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11</td>
<td>10,3±3,4</td>
<td>4-16</td>
</tr>
</tbody>
</table>

Hasta ve kontrol grubu arasındaki 25(OH)D düzeylerine göre ciddi eksiklik ≤ 10 ng/ml (Grup 1), eksiklik 10-20 ng/ml (Grup 2) ve yetersiz 20-30 ng/ml (Grup 3) sınıflaması tablo 17’de gösterilmiştir.

Tablo 17. Hasta ve Kontrol Gruplarında 25(OH)D düzeyleri

<table>
<thead>
<tr>
<th></th>
<th>Grup 1</th>
<th>Grup 2</th>
<th>Grup 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta Grubu n=99</td>
<td>52 (%52,5)</td>
<td>36 (%36,4)</td>
<td>11 (%11,1)</td>
</tr>
<tr>
<td>Kontrol Grubu n=10</td>
<td>7 (%70)</td>
<td>2 (%20)</td>
<td>1 (%10)</td>
</tr>
</tbody>
</table>
5. TARTIŞMA

D vitamini eksikliği öncelikle güneşle az maruz kalmasıyla ortaya çıkan UVB eksikliğiyle oluşmaktadır ve oldukça yaygındır. Gözlemser veriler D vitamininin kardiyovasküler hastalıklar ve arterel hipertansiyon patogenezinde yer aldığını konseptini desteklemektedir. D vitamininin antihipertansif etkisi RAAS’nin baskılanmasını, renoprotektif etkisini, vasküler hücreler üzerindeki direkt etkisini, kalsiyum metabolizmasının üzerine etkisini ve sekonder hiperparatiroidizmden koruyucu etkisini içermektedir.

Zadshir ve arkadaşlarının 18 yaş üstü 15.000’den fazla kişiyle Amerika’da gerçekleştirildiği Ulusal Sağlık ve Beslenme Araştırması (NHANES III) 65 yaş ve üstü populasyonunda, diğer yaş gruplarına kıyasla, yine siyahlarda ve Latin kökenli Amerikalılarda beyazlara oranla daha düşük vitamin D düzeyleri olduğu gösterilmiştir(129).

İspanya’daki 65 yaş üstü, D vitamini düzeyini etkileyecek herhangi bir hastalığı olmayan birinci basamak sağlık hizmetlerine başvuran 127 kişiyle yapılan bir çalışmada D vitamini düzeyi 10 ng/ml altında olan hasta oranı % 34,6 olarak saptanmış olup romatoloji polikliniğine başvurmuş 47-66 yaş arası postmenopozal kadınlara yapılan bir başka çalışmada ise normal değer 37 nmol/l (14,8 ng/ml) alındığında % 64 oranında D vitamini yetersizliği saptanmıştır(130,131). Biz de 65 yaş ve üzeri 99 hipertansif hasta üzerinde yaptığımız çalışmada % 52,5 oranında ciddi D vitamini eksikliği (10 ng/ml alta) saptadık. Kontrol grubunda ciddi D vitamini eksikliğini % 70 oranında saptadık. Çalışmaya D vitamini ve analoglarını kullananların dahil edilmemesi ve çalışmanın sonbahar ve kış aylarında gerçekleştirilmesi ciddi vitamin D eksikliği prevalansının yüksek olmasının nedeni olabilir. Kaldığı 65 yaş üstü kontrol grubunda da D vitamini eksikliği yüksek oranlarda bulunmuştur. Bu durum D vitamini eksikliğinin yöremizde hipertansif bireylerde olduğu kadar hipertansif olmayan bireylerde de yaygın olduğunu düşündürmektedir.

Snijder ve arkadaşlarının 65 yaş ve üzeri 1205 kişi ile yaptığı çalışmada yüksek serum PTH düzeyleri ile sistolik ve diastolik kan basıncı yüksekliği arasında ilişki bulunmuştur. Aynı çalışmada vitamin D düzeyi ile kan basıncı arasında anlamlı bir ilişki saptanmıştır. PTH infüzyonu sağlıklı bireylerde kan basıncını
yükselmektedir(132,109). Altta yatan mekanizma tamamen bilinmemekle birlikte PTH’nin düz kas hücreleri üzerinde damar duvarı kalınlaşmasına ve yüksek kan basıncına katkıda bulunan prosklerotik etkisi vardır(132). Bizim çalışmamızda da vitamin D düzeylerine göre oluşturduğumuz gruplar arasında SKB ve DKB ile vitamin D düzeyleri arasında anlamlı bir ilişki saptanmadı. Yapılan çalışmanın aksine PTH düzeylerine göre oluşturduğumuz gruplar arasında da SKB ve DKB ile PTH düzeyleri arasında anlamlı bir ilişki saptanmadı. Hastaların ilaç tedavisi altında olmaları bu ilişkiyi etkilemiş olabilir. Bu nedenle bu araştırmanın tedavi almayan bireylerde tekrar bakılması uygun olacaktır.

Chan ve arkadaşlarının 65 yaş ve üzeri 939 erkek hastada yaptığı çalışmada serum PTH düzeyi artışı ile SKB ve DKB düzeylerindeki artış arasında anlamlı bir ilişki olduğu gösterilmiş, D vitamini düzeyleri ile kan basınçları arasında anlamlı bir ilişki saptanmıştır. Bu çalışmada 25(OH)D düzeylerinin ortalamasının yüksek olması ve D vitamini eksikliği prevalansının düşük olması serum 25(OH)D düzeyleri ile kan basıncı arasındaki ters ilişki ortaya konma şansını azaltmış olabileceği düşünülmüştür(133).

Judd ve arkadaşlarının yaptığı çalışmada Amerikalı nonhipertansif beyazlarda SKB ile serum D vitamini konsantrasyonları arasında ters bir ilişki bulunmuştur. Yaşın dahil edildiği karşılaştırmada vitamin D düzeyleri ile kan basıncı arasındaki ilişki anlamlı bulunmamıştır. Artan yaş ile düşük D vitamini düzeyleri arasında bir ilişki olduğu gösterilmiştir, çünkü yaşlılarda deride 7 dehidrokolesterolün düşük konsantrasyonlarda olması nedeniyle D vitamini üretimi azalmaktadır(134).

Pfeifer ve arkadaşlarının 70 yaş üstü 148 kadın ile yaptığı çalışmada kısa dönem (8 haftalık) D vitamini (800 IU/gün) ve kalsiyum (1200 mg/gün) tedavisinin birlikte uygulanmasını sadece kalsiyum tedavisi uygulanlanlara göre sistolik kan basıncını azaltmada daha etkili olduğu gösterilmiştir. Kalsiyum ve D vitamini almakta olan grupta sadece kalsiyum almakta olan gruba göre SKB’dede % 9,3’lük azalma olduğu gösterilmiştir(135).

Forman ve arkadaşlarının üç büyük prospektif kohort NHS I (Nurses Health Study I), NHS II ve HPFS (Health Professionals Follow-up Study) çalışmalarındaki 209313 katılımcı arasında gerçekleştirdiği çalışmada yüksek D vitamini alımı ile hipertansiyon gelişim riskinin daha düşük olması arasında bir ilişki olmadığı gösterilmiştir. NHS I grubu D vitamini alımı en düşük <400 IU/gün, en yüksek ≥1600
IU/gün olmak üzere 5 kategoriye ayrılmıştır. Hipertansiyon gelişim riski ile D vitamini alımı arasında ilişki saptanmamıştır\(^{136}\). Forman ve arkadaşlarının yaptığı bir çalışmada plazma 25(OH)D düzeyleri ile hipertansiyon gelişim riski arasında ters bir ilişki olduğu gösterilmiştir\(^{137}\).

Jack L.He ve arkadaşlarının 20 yaş ve üzeri 7561 katılımcı ile gerçekleştirdiği çalışmada D vitamini düzeyleri ile SKB arasında ters bir ilişki olduğu gösterilmiştir. Serum 25(OH)D ve VKİ’den bağımsız olarak serum PTH düzeyleri ile hem sistolik hem de diyalostilik kan basınçları arasında pozitif ilişki bulunmuştur. PTH’nin kan basıncı üzerindeki etkisi tam olarak anlaşılamamış fakat birkaç mekanizma düşünülmektedir. PTH 25(OH)D’nin böbrekte 1,25(OH)\(_2\)D’ye dönüşümünü stimüle etmektedir, bu da intraselüler kalsiyum düzeylerinde yükselme, düz kas tonusunda artış ve yüksek tansiyon ile sonuçlanmaktadır. PTH gibi D vitamininin kan basıncı ile ilişkisi tamamen anlaşılasmamıştır. VDR’nin düşük kas hücrelerinde ve endotelyal hücrelerde bulunması D vitamininin vasküler fonksiyonlar üzerindeki direk etkisini düşündürmektedir\(^{138}\).

Chiu ve arkadaşlarının yaptığı çalışmada hipovitaminoz D’nin beta hücre fonksiyonları üzerine negatif etkisi ve 25(OH)D düzeyleri ile insülin sensitivitesi arasında pozitif bir korelasyon olduğu gösterilmiştir. Çalışmaya 75 gr glukoz ile yapılan oral glukoz tolerans testi sonucu açlık glukozu <110 mg/dl, 2. Saat plazma glukozu <140 mg/dl olan ve normotansif olan sağlıklı 126 kişi alınmıştır. Beta hücre fonksiyonlarını ve insülin sensitivitesini değerlendirildiğinde 3 saatlik hiperglisemik klemk teknigi kullanılmıştır. Hastaların açlık sonrası vücut yüzey alanlarına göre (11.4 gr/m\(^2\)) % 50 dekstroz ile bolus infüzyon sonrası plazma glukozunu yaklaşık 180 mg/dl düzeyinde tutacak şekilde % 30 dekstroz ile infüzyona devam edilmiştir. Birinci faz insülin yanıtı için 2.5, 5, 7.5, 10. dakikalardaki plazma insülin konsantrasyonları toplandı, ikinci faz yanıt için 2. ve 3. saat ortalama plazma insülin konsantrasyonları alınmıştır. İnsülin sensitivitesi ise insülin sensitivite indeksi kullanılarak hesaplanmıştır. 25(OH)D düzeylerinin <20 ng/ml olması hipovitaminoz D olarak tanımlanmıştır. Hipovitaminoz D’li kişilerin insülin direnci ve metabolik sendrom açısından yüksek riskli olduğu gösterilmiştir\(^{120}\). Bizim çalışmamızda HOMA-IR ile değerlendirilen insülin direnci ile D vitamini düzeylerine göre oluşturulan gruplar arasında anlamlı bir
ilişki saptanmadı. Tam tersine D vitamini düzeyleri ≤ 10 ng/ml olan grupta glukoz düzeyleri anlamlı derecede düşük bulunmuştur. Bu durum hastalar arasında

Diyabeti olmayan hipertansif yaşlı bireylerde insulin direncinin, arteryal sertliğin bağımsız belirleyicisi olduğu yapılan çalışmalarında gösterilmiştir. Altta yatan mekanizma tam olarak ortaya konulamasa da, insulin direncinin endotel bağımlı arteryal kompliansı azalttığı gösterilmiştir(139).

Lagunova ve arkadaşlarının 2126 hasta üzerinde yaptığı çalışmada mevsimsel değişimler ve D vitamini eksikliği prevalansı VKİ, cinsiyet, yaş kategorilerinde değerlendirilmiştir. Yaş ve cinsiyet gruplarında artan VKİ düzeyleriyle azalan 25(OH)D düzeyleri arasında anlamlı bir ilişki saptanmıştır. 25(OH)D düzeyleriyle VKİ arasında ters bir korelasyon olduğu gösterilmiştir(141). Bizim çalışmamızda hipertansif hastalar arasında ciddi D vitamini eksikliği bulunan grupta VKİ anlamlı derecede yüksek (p=0,001) saptanmıştır. Aynı grupta HDL düzeyleri anlamlı derecede (p=0,011) düşük saptanmıştır. Bu da bize D vitamini düzeyleri ile VKİ ve HDL düzeyleri arasında ters ilişki olduğunu düşündürmektedir.

Davis ve arkadaşlarının 18-40 yaş arası 90 sağlıklı siyah kadın üzerinde yaptığı çalışmada VKİ, bel çevresi ve HDL kolesterol arasındaki ilişki incelenmiştir. Çalışmaya alınan 90 kişi 3 farklı ırktan her grup 30 kişi olacak şekilde ayrılmıştır. Bir grupun diğer gruplardan istatistiksel olarak anlamlı derecede daha yüksek VKİ ve bel çevresi değerlerine sahip olduğu gösterilmiştir. Aynı grupta HDL düzeyleri de anlamlı derece düşük saptanmıştır(142).

Sengstock ve arkadaşlarının diyabeti olmayan hipertansif yaşlı bireylerde yaptığı çalışmada glukoz tolerans durumundan ve obeziteden bağımsız olarak arteryal sertlik ile insülin sensitivitesi arasında negatif bir korelasyon olduğu gösterilmiştir. Bu çalışmaya 60-80 yaş arası 42 hipertansif kişi alınmış olup bu kişilerin 4 hafta boyunca antihipertansif tedavilerine ara verilmiştir. 75 gr oral glukoz tolerans testi ile çalışmaya alınanlar bozulmuş glukoz toleransı ve normal glukoz toleransı olanlar olmak üzere iki gruba ayrılmıştır. Arteryal sertlik NB ve karotis-femoral NDH kullanılarak, insülin sensitivitesi ise insülin sensitivite indeksi kullanılarak hesaplanmıştır(139).

Sliem ve arkadaşlarının insülin direnci olan 32 yetişkin (grup A) ve insülin duyarlı 81 yetişkin (grup B) olmak üzere toplam 113 prediyabetik yetişkin ile yaptığı çalışmada grup A’da grup B’ye göre aortik sertlik indeksinde (β indeks) anlamlı bir artış
gösterilmiştür. Sertlik ile insülin direnci arasındaki korelasyon gibi benzer korelasyonlar yaş ve trigiserid düzeyleri arasında da gözlenmiştir. Çalışmada insülin direnci HOMA-IR formülüyle, aortik sertlik β indeks formülü ile hesaplanmıştır. HOMA-IR 3 düzeyinin altında olanlar insülin duyarlı, üstünde olanlar insülin dirençli olarak kabul edilmiştir. Açlık kan şekeri 100-126 mg/dl arasındaki olanlar prediyabetik olarak kabul edilmiştir. Prediyabetikler ile kontrol grubu arasında anlamli farklık gözlenmemiştir. Çalışmamızda HOMA-IR düzeyleri ile karotis sertlik indeksi arasında anlamli bir ilişki saptanmadı.

Birim çalışmalarımızda kardiyovasküler risk yönünden orta derecede ve yüksek derecede ek riski bulunanlar olarak ikiye ayrılan gruplar antihipertansif tedavi altında normal ve yüksek normal tensiyon sınıfları içerisinde yer almaktaydılar. İki grubun değerlendirilmesi sonucunda karotis sertlik indeksi düzeyleri arasında anlamli bir ilişki saptanmıştı. Yüksek ek risk grubunda olanların arteryel sertlik indeks değerleri orta derecede ek risk grubunda olanlara göre anlamli derecede daha yüksek (p=0,037) saptanmıştı. Yüksek ek risk grubunda olan hastaların SKB ve NB düzeylerinin de anlamli derecede yüksek (p değerleri sırasıyla 0,001, 0,001) olduğu saptanmıştı. Arteryel sertlik NDH’de artışla sonuçlanması ve diyastolik basıncın azalması sırasında sistolik basıncı arttırmasıdır. Böylece aort nabız basıncını artırmaktadır. Bizim çalışmalarımızda da iki grubun NB düzeyleri arasında anlamli derecede farklılık saptanması bu temel prensip ile açıklanabilir.

6. SONUÇLAR VE ÖNERİLER

1. Çalışmaya alınan 65 yaş ve üstü 99 hipertansif hastanın % 52,5’inde, 10 sağlıklı bireyin % 70’inde D vitamini ciddi eksik olarak bulundu.

2. Kardiyovasküler risk yönünden orta derecede ve yüksek ek risk olmak üzere ikiye ayrılan gruplar arasında yüksek ek risk grubunda olanlarda SKB, NB, karotis sertlik indeksi anlamlı derecede yüksek (p değerleri sırasıyla 0,001, 0,001, 0,037) saptandı.

3. D vitamini düzeylerine göre iki gruba ayrılan hastalar arasında D vitamini düzeyleri ile SKB, DKB, karotis sertlik indeksinde değerleri arasında anlamlı bir ilişki saptanmadı. D vitamini düzeylerinin ciddi eksik olduğu grup D vitamini düzeylerinin yetersiz olduğu grupla karşılaştırıldığında VKİ’lerin anlamlı derecede yüksek (p=0,001) olduğu saptandı. D vitamini düzeylerinin yetersiz olduğu grup D vitamini düzeylerinin ciddi eksik olduğu grupla karşılaştırıldığında HDL düzeylerinin anlamlı derecede yüksek (p=0,011) olduğu saptandı.

4. PTH düzeylerine göre iki gruba ayrılan hastalar arasında PTH düzeyleri ile SKB, DKB, karotis sertlik indeksi arasında anlamlı bir ilişki saptanmadı.

5. Kardiyovasküler risk yönünden ikiye ayrılan gruplar arasında D vitamini ve PTH düzeyleri ile karotis sertlik indeksi arasında anlamlı bir ilişki saptanmadı.

Sonuç olarak 25(OH)D vitamini ve PTH düzeyleri ile yaşlı hipertansiflerde arteryel sertlik arasında ilişki saptanmadı. Çalışma grubunun tansiyon değerlerinin ilaç tedavisi ile kontrol altında olması çalışmanın sonucunu etkilemiş olabilir. Bu ilişkiye değerlendirebilmek ve yaşlı hipertansiflerde D vitamini replasmanının gerekliliğine karar verebilmek için daha geniş kapsamlı çalışmalarla ihtiyaç vardır.

133. John P. Forman; Heike A. Bischoff-Ferrari; Walter C. Willett; Meir J. Stampfer; Gary C. Curhan. Vitamin D Intake and Risk of Incident Hypertension Results From Three Large Prospective Cohort Studies. *Hypertension.* 2005; 46:676-682.

ÖZGEÇMİŞ

Adı Soyadı : Salih İŞIK
Doğum Tarihi ve Yeri : 25.05.1981/ Seyhan-Adana
Medeni Durumu : Bekar
Adres : Güzelyalı Mah. 15 Sokak Bahar Apt. Kat:8 No:15
 Çukurova ADANA
Telefon : 0 (532) 3052396
E-Mail : drs.isik@gmail.com
Görev Yeri : Çukurova Üniversitesi
Yabancı Dili : İngilizce