IVF-ICSI-ET SİKLUSLARINDA LUTEAL FAZ DESTEĞİ İÇİN VERİLEN PROGESTERON VE PROGESTERON + ÖSTRADIOLÜN GEBELİK ORANLARINA ETKİSİ

Dr. Çiğdem AKÇABAY

UZMANLIK TEZİ

TEZ DANIŞMANI
Prof. Dr. Yılmaz ATAY

ADANA - 2010
TEŞEKKÜR

Uzmanlık eğitimim süresince bilgi ve deneyimlerini esirgemeyen saygıdeğer hocalarım; Prof. Dr. Oktay KADAYIFÇİ, Prof. Dr. F. Tuncay ÖZGÜNEN, Prof. Dr. M. Turan ÇETİN, Prof. Dr. Aytekin ALTINTAŞ, Prof. Dr. M. Ali VARDAR, Prof. Dr. Cüneyt EVRÜKE, Prof. Dr. Cansun DEMİR, Yard. Doç. Dr. Levent TOKSÖZ, Yard. Doç. Dr. İ. Ferhat ÜRÜNSAK, Yard. Doç. Dr. A. Barış GÜZEL, Yard. Doç. Dr. Selim BÜYÜKKURT, Uzm. Dr. Ümran KÜÇÜKGÖZ GÜLEÇ’e

Tez çalışmanın her aşamasında ve uzmanlık eğitimim süresince tecrübe, bilgi ve desteğini esirgemeyen tez hocam sayın Prof. Dr. Yılmaz ATAY’a

Yardımla Üreme Merkezi Ünitesinin değerli öğretim üyesi Yard. Doç. Dr. İ. F. ÜRÜNSAK başta olmak üzere IVF ünitesinde çalışan Zeynep ÖZCAN’a, biyologlarımızı ve diğer çalışanlara,

Bulgularımın istatistiksel değerlendirilmesindeki yardımları için Dr. İlker İNAN’a,

Asistanlık sürecini paylaştığım, birlikte çalışmaktan büyük mutluluk-duyuduğum, bölümümüzden mezun olmuş ve halen asistan olarak görev yapan arkadaşlarına, tüm hemsire, personel arkadaşlarına,

Hiçbir zaman desteğini esirgemeyen eşim Özgür’e ve bu günlere gelmemi sağlayan annem, babam ve kardeşlerime teşekkürlerimi sunarım.

Dr. Çiğdem AKÇABAY
İÇİNDEKİLER

TEŞEKKÜR .. I
İÇİNDEKİLER .. IX
TABLO LİSTESİ ... IV
ŞEKİL LİSTESİ .. V
KISALTMALAR LİSTESİ .. VI
ÖZET .. VII
ABSTRACT ... VIII
1. GİRİŞ .. 1
2. GENEL BİLGİLER ... 3
 2.1. Yardımla Üreme Teknikleri ... 4
 2.1.1. IVF Endikasyonları .. 5
 2.1.1.1. Tubal Faktör İnfertilitesi ... 6
 2.1.1.2. Endometriyozis ... 6
 2.1.1.3. Erkek Faktörü ... 6
 2.1.1.4. Açıklanamayan İnfertilite .. 7
 2.1.2. IVF’de Prognostik Faktörler ... 7
 2.1.2.1. Maternal Yaş ... 7
 2.1.2.2. Over Kapasitesi ... 8
 2.1.3. IVF Öncesi Değerlendirme ... 9
 2.1.3.1. Over Kapasitesi ... 9
 2.1.3.2. Erkek Faktörü .. 9
 2.1.3.3. Enfeksiyöz Hastalıkların Taraması ... 9
 2.1.3.4. Deneme Embriyo Transferi .. 10
 2.1.3.5. Uterusun Değerlendirilmesi ... 10
 2.2. Yardımcı Üreme Tekniklerinde Ovulasyon İndüksiyonu .. 10
 2.2.1. Doğal Siklus .. 11
 2.2.2. Klomifen Sitrat .. 11
 2.2.3. Klomifen ve Eksojen Gonadotropin ile Arısdık Tedavi ... 11
 2.2.4. Uzun Etkili GnRH Antagonistleri ile Yapılan Down Regülsiyonun Sonrasında Eksojen Gonadotropin Uyarımı Uzun (Long) Protokoller12
 2.2.5. GnRH Agonisti ve Eksojen Gonadotropinlerle Arısdık Olayı Yapılan Kısıya da Flare Protokoller ...14
 2.2.6. GnRH Antagonist Eklenerek Yapılan Eksojen Gonadotropin Protokoller ...16
 2.3. Oosit Toplanması .. 17
2.4. Fertilizasyon ... 18
 2.4.1. Sperm Toplama Teknikleri ... 18
 2.4.2. İntrasitoplazmik Sperm Enjeksiyonu (ICSI) ... 19
2.5. Embriyo Transferi .. 20
2.6. Luteal Faz .. 20
 2.6.1. Corpus Luteum ve Luteal Steroidogenez .. 20
 2.6.2. Stimüle Edilmiş Sikluslarda Korpus Luteum Fonksiyonu .. 22
 2.6.3. Luteal Faz Sırasında Endometriumda Meydana Gelen Değişiklikler23
2.6.4. Endometrial Kapasite (Endometrial Receptivite) ..25
2.7. Luteal Faz Desteği ..26
 2.7.1. Luteal Fazda Progesteron Desteği..26
 2.7.2. Luteal Fazda hCG Kullanımı ..28
 2.7.3. Luteal Fazda Progesterona Östrojen Eklenmesi ..28
 2.7.4. Luteal Fazda GnRH Kullanımı ..28
 2.7.5. Luteal Faz Desteği Başlama ve Bitirme Zamanı ..29
3. MATERİYAL VE METOD ..31
 3.1. Hasta Seçimi ...31
 3.2. Ovulasyon İndüksiyon Protokolü ..31
 3.3. Oosit Toplanması ..32
 3.4. ICSI İşlemi ..34
 3.5. Luteal Faz Desteği ..34
 3.6. Embriyo Transferi ..34
 3.7. Hormonal Ölçümler ..36
 3.8. İstatistiksel Yöntem ..36
4. BULGULAR ...37
5. TARTIŞMA ...45
6. SONUÇLAR ..53
KAYNAKLAR ..55
ÖZGEÇİMİŞ ...65
TABLO LİSTESİ

Tablo No: Sayfa No:

Tablo 1. İnfertilite Nedenleri ... 3
Tablo 2. Grupların İnfertilite Sebepleri... 37
Tablo 3. Gruplar Arası Kadın, Erkek Yaş ve İnfertilite Süreleri............................. 37
Tablo 4. Grup Özellikleri .. 38
Tablo 5. Grupların Gebelik Oranları.. 39
Tablo 6. Serum E2 Seviyeleri... 41
Tablo 7. Gebelik Oluşan ve Oluşmayan Sikluslarda Gruplarından Bağımsız Olarak Özellikleri 41
Tablo 8. ET’nin 12. Gününde E2 Seviyeleri ... 43
<table>
<thead>
<tr>
<th>Şekil No:</th>
<th>Sayfa No:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şekil 1. İnfertilite nedenleri</td>
<td>4</td>
</tr>
<tr>
<td>Şekil 2. GnRH agonisti ile uzun protokol</td>
<td>14</td>
</tr>
<tr>
<td>Şekil 3. GnRH agonisti ve ekzojen gonadotropinlerle ardışık olarak yapılan kısa ya da flare protokoller</td>
<td>15</td>
</tr>
<tr>
<td>Şekil 4. Oral kontraseptif mikrodoz flare-up protokolü</td>
<td>16</td>
</tr>
<tr>
<td>Şekil 5. Grup I ve II'nin E2 düzeyleri</td>
<td>40</td>
</tr>
<tr>
<td>Şekil 6. Embriyo transfer gününde E2 düzeyleri</td>
<td>42</td>
</tr>
<tr>
<td>Şekil 7. Gebe olan ve olmayan grupta E2 düzeyleri</td>
<td>43</td>
</tr>
<tr>
<td>Şekil 8. ET sonrası 12.gende gebe olan ve olmayan sikluslarda serum östradiol seviyeleri</td>
<td>44</td>
</tr>
<tr>
<td>Abbr.</td>
<td>Full Form</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>ART</td>
<td>Assisted Reproductive Technology</td>
</tr>
<tr>
<td>E2</td>
<td>Östradiol</td>
</tr>
<tr>
<td>FSH</td>
<td>Follikül Stimulan Hormon</td>
</tr>
<tr>
<td>GIFT</td>
<td>Gamet Intrafallopian Transfer</td>
</tr>
<tr>
<td>GnRHa</td>
<td>Gonadotropin releasing hormon analogları</td>
</tr>
<tr>
<td>hCG</td>
<td>Human koryonik gonadotropin</td>
</tr>
<tr>
<td>hMG</td>
<td>Human Menopozal Gonadotropin</td>
</tr>
<tr>
<td>ICSI-ET</td>
<td>İntrasitoplazmik Sperm Enjeksiyonu-Embriyo Transferi</td>
</tr>
<tr>
<td>IVF</td>
<td>İn vitro fertilizasyon</td>
</tr>
<tr>
<td>IUI</td>
<td>İntra Uterin İnseminasyon</td>
</tr>
<tr>
<td>KOH</td>
<td>Kontrollü ovarian hiperstimülasyon</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizan Horman</td>
</tr>
<tr>
<td>MESA</td>
<td>Mikroskobik Epididimal Sperm Aspirasyonu</td>
</tr>
<tr>
<td>OHSS</td>
<td>Ovarian Hiperstimülasyon Sendromu</td>
</tr>
<tr>
<td>P</td>
<td>Progesteron</td>
</tr>
<tr>
<td>PESA</td>
<td>Perkutan Epididimal Sperm Aspirasyonu</td>
</tr>
<tr>
<td>PGT</td>
<td>Preimplantasyon Genetik Tanı</td>
</tr>
<tr>
<td>POST</td>
<td>Peritoneal oosit ve sperm transferi</td>
</tr>
<tr>
<td>PZD</td>
<td>Parsiyel Zona Disseksiyonu</td>
</tr>
<tr>
<td>rFSH</td>
<td>Rekombinant FSH</td>
</tr>
<tr>
<td>SUZI</td>
<td>Subzonal Sperm Enjeksiyonu</td>
</tr>
<tr>
<td>TESE</td>
<td>Testiküler Sperm Ekstraksiyonu ve Aspirasyonu</td>
</tr>
<tr>
<td>TET</td>
<td>Tubal Embriyo Transferi</td>
</tr>
<tr>
<td>YÜT</td>
<td>Yardımla Üreme Teknikleri</td>
</tr>
<tr>
<td>ZIFT</td>
<td>Zigot Intrafallopian transfer</td>
</tr>
</tbody>
</table>
ÖZET

IVF-ICSI-ET Sikluslarında Luteal Faz Desteği İçin Verilen Progesteron ve Progesteron + Östradiolün Gebelik Oranlarına Etkisi

Amaç: Gonadotropin releasing hormon analogları (GnRHa) kullanılarak kontrollü ovarian hiperstimulasyon yapılan IVF-ICSI-ET sikluslarında, luteal faz desteği için tek başına progesteron ile progesterona ilave olarak verilen östrojen ile elde edilen gebelik oranlarını karşılaştırmaktır.

Bulgular: Çalışmaya alınan hastalardan progesteron + östrojen alan grupta βhCG pozitifliği 20 (% 28,2), progesteron alan grupta ise 18 (% 25,4) tesbit edildi. Devam eden gebelik oranları progesteron + östrojen alan grupta 11 (% 15,5), progesteron alan grupta ise 10 (% 14,1) hastada tesbit edildi. Biyokimyasal abortus progesteron + östrojen alan grupta 7 (% 9,9), progesteron alan grupta ise 6 (% 8,5) hastada tesbit edildi. Klinik abortus her iki grup da 1 (% 1,4) hastada tesbit edildi.

ABSTRACT

Effects of Giving Progesterone and Progesterone + Estrogen on Pregnancy Rates for Luteal Phase Support, in IVF-ICSI-ET Cycles

Objective: The aim of this study is to compare the pregnancy rate achieved in IVF/ICSI-ET cycles with gonadotropin releasing hormone analogues (GnRHa) and supported with only progesterone or progesterone plus estrogen during the luteal phase.

Material and Methods: While hypophyser suppression will continue after the cessation of GnRHa which is used in the controlled ovarian hyperstimulation cycles, the levels of estrogen and progesterone are decreasing in the middle of luteal phase. This study evaluates whether adding estrogen to the routine progesterone use for luteal phase support, ameliorates pregnancy rates. The study was conducted in the assisted reproduction unit of the department of obstetrics & gynecology in the University of Cukurova School of Medicine between December 2008 and October 2009. Data from the 142 infertile women aged from 20 to 40 years old were prospectively collected. Half of them received 90 mg progesterone gel via transvaginal route and the others had additionally transdermal estrogen patch given weekly. The levels of estrogen are determined on the day of transfer of embryo and 12th day. Both groups are compares for the estrogen levels, β-hCG positivity, continuing pregnancy, biochemical abortion and clinical abortion rates.

Results: The number of women who had positive β-hCG was 20 (28.2%) in the group with progesterone + estrogen and 18 (25.4%) in the group progesterone alone. Continuing pregnancy rate was 11 (15.5%) in the group progesterone + estrogen and 10 (14.4%) in the group progesterone alone. Biochemical and clinical abortion rates were 7 (9.9%) and 6 (8.5%); 1 (1.4%) and 1(1.4%) consecutively in the group of progesterone + estrogen and progesterone alone.

Conclusion: Our study showed that adding supplementary estrogen to the progesterone has no positive effect on the estrogen levels, β-hCG positivity, continuing pregnancy, biochemical abortion and clinical abortion rates. Furthermore we did not detect any significant difference on the estrogen levels at the transfer day or 12th day. However the 12th day estrogen level was significantly elevated in pregnant. We concluded that the adding estrogen has no sense, but increased estrogen levels at the 12th day may be clue of ovarian hyperstimulation.

Keywords: IVF-ICSI-ET Cycles, GnRH analogues, luteal support, progesterone, estrogen.
1. **GİRİŞ**

Son yıllarda Yardımla Üreme Tekniklerindeki (YÜT) ilerlemelere rağmen, embriyo implantasyon aşaması halen reproduktif başarıyı sınırlayan en önemli adım olarak karşımıza çıkmaktadır. Embriyoloji laboratuvar tekniklerindeki ilerlemeler mükemmel embriyoların elde edilmesine imkan verirken, transfer edilen her mükemmel embriyo endometriuma implante olmayı başaramamaktadır. İmplantasyon embriyo ve endometriyum arasında senkronizasyon gerektiren kompleks bir süreçtir. İmplantasyonun başarılı olması için, normal olarak gelişen embriyo uterin kaviteye girmeli ve endometriyumun morfolojik ve moleküler değişiklikleriyle karakterize reseptif (alıcı olduğu dönemde) fazında uterin epitelle etkileşmelidir.

KOH yapılan IVF-ET sikluslarında luteal faz ortasında östrojen ve progesteron seviyelerinde düşüş olmaktadır. Bunun nedeni agonist tedavisini kestikten sonra hipofiz baskılanma devam edebilir. Luteal faz sonrasında ki düşük luteal LH seviyeleri luteal fonksiyonu sürdürmek ve uyarmak için yeterli olmayabilir ve endometriyumu...
implantasyona hazırlamak veya oluşursa erken dönemdeki bir gebeliği desteklemek için önlemler gerekebilir.⁴ Luteal fazda progesteron ve human koryonik gonadotropin (hCG) desteği’nin implantasyon oranlarını iyileştirdiğini dair literatürde pek çok çalışma vardır.⁴ Bu nedenle progesteron ve hCG desteği yaygın olarak kullanılmaktadır. Luteal fazdaki östrojen seviyeleri ve luteal faz desteği için östrojen kullanımı hakkında veriler ise hem sınırlı hem de tartışmalıdır.

Bu çalışmanın amacı; gonadotropin releasing hormon analogları (GnRHa) kullanılarak kontrollü ovarian hiperstimulasyon sağlanan ICSI-ET sikluslarında, luteal faz desteği için tek başına progesteron ile progesterona ilave olarak verilen E2 ile elde edilen implantasyon ve gebelik oranlarını karşılaştırmaktır.
2. GENEL BİLGİLER

Korunmasız ve haftada en az 2-3 kez düzenli cinsel ilişkiye rağmen bir yıl boyunca gebe kalınamaması infertilite olarak tanımlanmaktadır. Bu reproduktif yaş aralığındaki çiftlerin % 10-15’ini etkilemektedir.5 Fekundabilite, tek menstrual siklusda gebe kalabilme olasılığıdır (Normal çiftlerin % 25’i). Fekundite ise tek menstrual siklusda canlı doğum elde edilebileme yeteneği olarak tanımlanmaktadır.6 Günümüzde evlilik yaşının ileri olması, evlendikten sonra gebeliklerin ileri yaşlara ertelenmesi, doğum kontrol seçeneklerinin artması, provake abortusun yasal olması fertilitette azalmaya neden olan en önemli faktörlerdir.6

İnfertilitenin sıklığı ve nedenleri bir toplumdan diğerine farklılık göstermektedir. Çiftlerin % 30-40’ında erkek, % 40-50’sinde ise kadın infertiliteden sorumludur. % 10-15 çiftte ise günümüzdeki mevcut standart tanısal testlerle izah edilemeyen (açıklanamayan infertilite) mevcuttur.

İnfertilite nedenleri:6

<table>
<thead>
<tr>
<th>İnfertilitenin Genel Nedenleri</th>
<th>İnfertilitenin Kadına Bağlı Nedenleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Tubal ve pelvik patoloji (%35)</td>
<td>1-Tubal ve pelvik patoloji (% 40)</td>
</tr>
<tr>
<td>2-Erkek faktörü (%35)</td>
<td>2-Ovulatuar disfonksiyon (% 40)</td>
</tr>
<tr>
<td>3-Ovulatuar Disfonksiyon (%15)</td>
<td>3-Açıklanamayan infertilite (% 10)</td>
</tr>
<tr>
<td>4-Açıklanamayan İnfertilite (% 10)</td>
<td>4-Nadir problemler (% 10)</td>
</tr>
<tr>
<td>5-Nadir problemler (% 10)</td>
<td></td>
</tr>
</tbody>
</table>
2.1. Yardımla Üreme Teknikleri

Yardımla üreme teknolojisi (ART: Assisted Reproductive Technology), overden oositlerin elde edilmesini sağlayan tüm teknikleri içermektedir. İlk ve en yaygın yöntem in vitro fertilizasyondur, ancak gün geçtikçe teknolojik yöntemlerde sayıca artmaktadır.

IVF-ET işlemi, eksojen gonadotropin ile yapılan kontrollü ovarian stimülasyonu, transvajinal ultrasonografi altında oosit toplama işlemini, laboratuarında fertilizasyonu ve embriyoların transservikal olarak transferini içerir. IVF ile Dünya'ya gelen ilk gebelik 1978'de gerçekleşmiştir.7

GIFT (Gamet Intrafallopian Transfer): 1984 yılında ilk olarak Asch tarafından tanımlanan bu yöntem, başlangıçta tubal patolojinin olmadığı, açıklanamayan ve erkek infertilitesi olanlarda tercih edilmiştir. Bu yöntemde toplanan oositler ve spermler bir araya getirilip laparoskopik olarak tuba uterinin ampuller bölgesinde transfer edilir. Uygulama esnasında genel anestezi verilmesi, fertilizasyon ve embriyo gelişiminin invitro izlenmesi ve ektopik gebelik riskinin fazla olmasıından dolayı bu yöntem fazla kullanılmamıştır. GIFT ile, döllenme in vitro yerine in vivo ortamda olmaktadır. Bu sebepten dolayı GIFT kişisel moral, geleneksel nedenlerden dolayı bazı çiftlerde IVF’e alternatif olabilir.8,9

[Diagram: Şekil 1. İnfertilite nedenleri]
ZIFT (Zigot Intrafallopian Transfer): Chen tarafından 1986 yılında önerilmiş bir tekniktir. Bu teknikte zigot tuba uterinale laparoskopi yardımcıyla transfer edilir.\(^\text{10}\)

ZİFT ve GİFT tekniği olarak embriyo transferi yapılamadığı durumlarda uygulanmaktadır. ZİFT’ded de dołlenme in vitro olurken GİFT de dołlenme in vivo olmaktadır. IVF’e göre ZİFT ve GİFT de ektopik gebelik riski daha fazla çoğun gebelik oranlarını benzerdir.

PZD (Parsiyel Zona Disseksiyonu): Spermin oositle ulaşılabilmesi için zona pellicudada spermin geçebileceği bir açıklık oluşturduğu oositin inseminine edilmesidir.\(^\text{11,12}\)

SUZI (Subzonal Sperm Enjeksiyonu): Spermlerin mikroenjeksiyon yöntemi ile subzonal bölgeye yerleştirilmesidir.\(^\text{11,12}\)

TET (Tubal Embriyo Transferi): Laparoskopi yardımıyla fallop tüpüne dołunmeye başlamış embriyoların bırakılmasıdır.

POST (Peritoneal Oosit ve Sperm Transferi): Oosit ve spermlerin pelvis boşluğuna bırakılmasıdır.

ICSI (Intrasitoplazmik Sperm Enjeksiyonu): Tek bir spermin çok ince pipet yardımcıla oosit sitoplazmasına enjekte edilmesidir.

2.1.1. IVF Endikasyonları

IVF ilk olarak cerrahiden faydalanamayan tubal hasarı olan hastalar için planlanmıştır; ancak günümüzde infertilitenin hemen her sebebinde kullanılmaya başlanmıştır.

Prematur ovarian yetmezlik problemi olan ve üreme çağını geçmiş kadınlarda, genç bayanlardan oosit bağı ile birlikte yüksek IVF başarısı mevcuttur. Normal overi olan ama fonksiyonel uterusu olamayanlarda (müllerian anomali, şiddetli intrauterin yapışıklık, geçirilmiş histerktomi), gebeliğin önemli riskler getirebileceği medikal hastalığa sahip kadınlarında da taşıyıcı aneplik uygulama amacıyla IVF uygulanabilir. Otozomal resesif veya seks geçişli genetik hastalıklarda veya dengeli kromozomal translokasyonlarda IVF eşliğinde yapılacak PGT (Preimplantasyon genetik tanı) işlemi etkilenmiş bir çocuğun doğmasını engelleyecek. İlerlemiş kadın yaşta, tekrarlayıcı abortusları, tekrarlayıcı IVF başarısızlığı olan kadınlarda IVF sırasında PGT yapılması anöploid embiyoların dışlanması için giderek daha fazla ilgi çekmektedir.\(^\text{6}\)
2.1.1.1. Tubal Faktör İnfertilitesi

Distal tubal hastalıktaka hafif hasar veya minimal peritubal yapışıklık varlığında yaşlı genç hastalarda cerrahi denense de ciddi hasar varlığında yardımcı üreme tekniği mutlaka uygulanmalıdır. İnfertilitesi 1-2 yıl içinde gebe kalamayan olgularda, hastalığın ciddiyetinden bağımsız olarak yaşlı ileri olan kadınlarda ve tekrarlayan distal tubal tıkanıklığı olan hastalarda yardımcı üreme tekniği tercih edilmelidir.

Şiddetli distal tubal hastalığı olan kadınlarda IVF öncesi cerrahiden fayda görebilir. Uterin kavite ile bağlantısı olan hidrosalpinks varlığında (proximal açık distal tıkalı) IVF ile elde edilen gebelik ve canlı doğum oranları neredeyse yarısı yarısı azaldığı gösterilmiştir. Hidrosalpinks sıvısı inflamatuar karakterizedir ve embriyo ve endometriyuma toksik etki gösterebilir. IVF öncesi laparoskopik salpenjektomi yapılması IVF başarısını artırdığı görülmüştür.

Proximal tubal tıkanıklık tanısı konulduktan sonra cerrahi denenebilir. Tubal cerrahi başarısızlığı durumunda, postoperatif 6-12 ay geçmesine rağmen gebelik oluşmamış ise IVF-ICSI denenmelidir.

2.1.1.2. Endometriyozis

Minimal ve hafif endometriyozis varlığında tedavi seçenekleri bekleme tedavisi, cerrahi tedavi, ovulasyon indüksiyonu + IUI (İntra Uterin İnseminasyon), IVF olabilir.

2.1.1.3. Erkek Faktörü

Total motil sperm sayısı 5 milyonun altında ise IVF-ICSI uygulanmalıdır.
Total motil sperm sayısı 3 milyonun altında ise, ciddi oligoastenospermi veya teratospermi mevcutsa ICSI uygulanmalıdır. Azospermik hastalardan da testislerden sperm elde edilerek ICSI yapılabilir.

Total sperm sayısı 10 milyonun üstünde ise intra uterin inseminasyonda iyi sonuçlar alınmaktadır. Ortalama 3-4 siklus İUI uygulamasına rağmen gebelik elde edilmemiş veya ileri bayan yaşlı varsa IVF-ICSI uygulanmalıdır.

2.1.1.4. Açıklanamayan İnfertilite

Açıklanamayan infertilite de İUI tedavisi 3-4 kez denenebilir. Gebelik oluşmazsa İVF-ICSI yöntemine geçilir. İleri kadın yaşında özellikle 38 yaş üzeri İUI uygulamaksızın direk İVF-ICSI yapılabilir.16

2.1.2. IVF’de Prognostik Faktörler

İVF ile ilgili başarı oranları çoğu bilinmeyen birçok faktöre bağlıdır. Bir IVF siklusuna başlamadan önce maternal yaş, over kapasitesi ve önceki üreme performansı değerlendirilmelidir. Genç ve normal over kapasitesine sahip kadınlarda gebelik ihtimali, yaşlı ve kapasitesi daha düşük olanlara göre daha yüksektir. Daha önceden bir tane canlı doğumlu olanlar nulliparalara göre daha şanslıdır. IVF sonuçlarından elde edilen çalışmalar ile yapılan meta analize göre endometriozisi olan kadınlarda başarı oranı tubal faktörü olanlara göre daha düşüktür.17 Ancak ulusal ART yıllık başarılarından elde edilen ulusal raporlara göre azalmış over kapasitesi hariç diğer infertilite tanılarının ve sebeplerinin IVF başarı şansı üzerine etkisi yoktur.18 Sigara içen tüm kadınlarda sigara içimi IVF öncesi kesilmelidir; sigara içimi başarı şansını yarısı yarıya azaltmaktadır.19,20

2.1.2.1. Maternal Yaş

ART ile elde edilen başarı oranları, doğal fertilite olduğu gibi, maternal yaş ilerledikçe azalmaktadır. Elde edilen oosit ve embriyoların sayısı daha az embriyo fragmentasyonu daha fazla olmaktadır. İmplantasyon ve canlı doğum oranları da genç kadınlara göre daha düşüktür.18,21,22
2001 yılı için yapılan ulusal özette embriyo transferi başına canlı doğum oranı 35 yaş altında % 41,1, 35-37 yaş arası % 35,1, 38-40 yaş arası % 25,4, 41-42 yaş arası % 14,5, 43 yaş için % 5,9, 44 yaş ve sonrası için % 2,9’dur.\(^{18}\)

2.1.2.2. Over Kapasitesi

Over kapasitesi kavramı, geriye kalan ovarian follikül havuzunun büyüklüğü ve kalitesi anlamında olup, ölçüm için çeşitli yöntemler kullanılmaktadır. Bir kadının sahip olduğu toplam oosit sayısı genetik olarak belidir ve yaş am boyu giderek düşer. Doğumda 1-2 milyon iken, pubertede 300.000’e, 37-38 yaş arası (folliküler azalma arttığında) 25.000’e düşer. Menopozda ise 1000’ den azdır.\(^{23,24}\)

Yeterli olgunluga erişmiş folliküler inhibin-B üretilir bu da hipofizdeki Follikül Stimulan Hormon (FSH) salgısı için negatif feedback etki yaparak FSH salgısını azaltır. Yaş ilerledikçe, azalan folliküler havuz daha az İnhibin B salgılar ve özellikle erken folliküler fazda FSH seviyelerinde yükselmeye yol açar.\(^{25-29}\) Bu yaşla uyumlu fizyolojik mekanizmalar ovarian testleri ölçmek için kullanılan yöntemlerin ana mantığını oluştururdu.

Over rezervi testi eksojen gonadotropin tedavisine verilecek cevabı, IVF ile elde edilebilecek başarı oranını tahmin etmekte ve IVF adaylarının seçiminde kullanılabilir. Klinik uygulamada adetin 3. günü FSH ölçümü ve klomifener sitrat testi en çok kullanılan yöntemlerdir.

Adetin 3. günü serum FSH seviyesi: FSH seviyesi artıckça, stimulasyon sırasında en fazla östradiol seviyesi, toplanan oosit sayısı, gebelik ve canlı doğum oranları azalır.\(^{30-36}\) 3. gün FSH seviyesi 10 IU/L’nin üzerinde ise azalmış over rezervini gösterir.

Klomifener Sitrat Testi: Siklusun endokrin dinamığını gösteren sensitif ve provakatif testtir. Test klomifener sitrat ile tedaviden önce ve sonra bazal ve uyarılmış durumları göstermektir. Siklusun 3. günü FSH ölçümü yapılır. Siklusun 5-9 günleri 100 mg /gün klomifener sitrat verilir. Siklusun 10. günü FSH ölçümü yapılır. Siklusun 10.

2.1.3. IVF Öncesi Değerlendirme

IVF öncesi; over kapasitesi, erkek faktörü, enfeksiyöz hastalıkların taraması, transfer testi ve uterusun değerlendirilmesi yapılmalıdır.

2.1.3.1. Over Kapasitesi

Over kapasitesi testinin prognostik önemi vardır ve IVF planlanan her kadına yapılmalıdır. Over cevabı 3. gün FSH seviyeleri ile ters orantılı olduğu için sonuçlar uygun tedavi rejimini seçmek ve gonodotropin dozunu belirlemek için önemlidir.

2.1.3.2. Erkek Faktörü

IVF öncesi sperm tahliili tekrarlanmalıdır. Sperm morfolojisinin değerlendirilmesi aynı zamanda ICSI’nin önerilip önerilmeyeceğini belirler.

2.1.3.3. Enfeksiyöz Hastalıkların Taraması

IVF başarısını azaltabilecek ya da gebe kalmanın sikluluca spontan düşük riskini artıtabilecek fark edilmemiş Klamidya enfeksiyonunu saptamak için rutin tarama...
yapılmalıdır.⁴⁶⁻⁴⁸ Her iki partnerin HIV, hepatit B, hepatit C infeksiyonu açısından rutin taramaları tibbi ve laboratuvar ekibin korunması, IVF sonucu elde edilecek fetüsün korunması ve dondurulmuş embriyolar arasında çapraz kontaminasyon olmaması açısından önerilmektedir.

2.1.3.4. Deneme Embriyo Transferi

Deneme embriyo transferi uterin kavite derinliğini ve en başarılı ve atravmatik embriyo transferini saptamak için uygulanır. Gözlemler kaydedilmelidir. Randomize ve kontrollü çalışmadan elde edilen sonuçlar deneme embriyo transferlerinin zor embriyo transferi sıklığını azaltarak IVF başarısını artırdığını göstermektedir.⁴⁹

2.1.3.5. Uterusun Değerlendirilmesi

2.2. Yardımcı Üreme Tekniklerinde Ovulasyon İndüksiyonu

Birço ¹ tedavi rejimi vardır.
1- Hiç uyarım yapmamak (doğal siklus)
2- Minimal uyarım yapmak (Klomifen sitrat)
3- Hafiif uyarım yapmak (Klomifen sitrat ve düşük doz gonadotropin ile ardışık tedavi)
4- Agresif uyarım yapmak (GnRH agonosti veya agonisti ile beraber ya da tek başına yüksek doz gonadotropin tedavisi)
2.2.1. Doğal Siklus

İlk başarılı IVF gebeliği spontan bir menstruel siklusda tek bir oosit toplanmasını takiben gerçekleştirilmiştir. Doğal siklusda sadece bir olgun oosit ve tek bir embriyo elde edilir. Siklus başına başarı şansı düşüktür. Doğal IVF siklusu; over uyarımına zaten düşük cevap veren hastalar veya uyarımın medikal sebeplerden dolayıاستفادة olabileceğinde bir seçenek olabilir. Eksojen hCG enjeksiyonu önder follikül yeterli olgunluğa eriştiğinde yapılır ve bu yüzden oosit toplama için en uygun zamanı saptamak için endojen LH monitorizasyonu yapmaya gerek yoktur.

Paulson ve arkadaşları normal ovulatuar siklurarı olan 46 çiftten oluşan bir grubun doğal siklurularını izleyerek bu siklurarda uygulanan IVF için devam eden gebelik başarısını % 12 bulmuşlardır.

2.2.2. Klomifen Sitrat

2.2.3. Klomifen ve Eksojen Gonadotropin ile Ardışık Tedavi

Tedavi rejimine GnRH antagonist eklenmesi azda olsa erken LH salınımı riskini azaltır ama aynı zamanda maliyeti de artırır.59,60 18 mm’lik en az bir follikül elde edildiğinde intramusküler hCG uygulanır. Oosit toplama işlemi 34-36 saat sonra yapılır. Uzun protokole göre daha az oosit toplanmış ve daha az embriyo elde edilmiş olsa da gebelik oranları çok düşük değildir ve ovarian hiperstimülasyon riski daha azdır.

2.2.4. Uzun Etkili GnRH Agonistleri ile Yapılan Down Regüläsyonun Sonrasında Ekzojen Gonadotropin Uyarımı Uzun (Long) Protokoller

GnRH agonistlerini içeren protokoller genel başlıklar halinde şu şekilde özetlenebilir:

1- Uzun Protokoller, 2-Oral kontraseptif ve uzun protokoller, 3-stop protokoller, 4-mikrodoz flare up, 5-kısa protokoller.

Uzun GnRHa siklunda, GnRH agonist tedavisi midluteal aşamada, ovulasyondan yaklaştık bir hafta sonra ya da adetin 21. gününde başlar. Bu dönemde endojen gonadotropin seviyeleri düşüktür ve agonistlerin sahip olduğu alev (flare) etkileri yeni bir folliküler gelişimi uyarmak anlamında en düşük seviyededir.66 En çok kullanılan
GnRH agonistleri; lüprodil asetat (cilt altı enjeksiyon) ve nafarelin asetatdır (intranasal olarak uygulanır) Buserelin (ciltaltı veya intranasal uygulama) ve triptorelin (ciltaltı) de yaygın olarak kullanılmaktadır.

Uzun GnRHa protokolde leuprolide adet başlayıcaya kadar veya gonadotropin enjeksiyonuna kadar 1,0 mg ile tedavi başlanır. Bundan sonra 0,5 mg’a düşür ve hCG enjeksiyonuna kadar devam edilir. Nafarelin için ise başlama dozu tipik olarak günde 2 kez 400 μg kadardır ve gonadotropin başladığında 200 μg’a düşer. Tek sefer uygulanan uzun etkili GnRH agonisti tedavilerde (Goserelin, lüprodil) uygun yaklaşımlarlardır; ancak gonadotropin indüksiyonu için kullanılan doz ve süre günlük enjeksiyonlara göre daha fazladır.67 Kötü over kapasitesi olduğu bilinen hastalarda aşırı hipofiz baskılamasının yol açmamasın için dozu düşürmek veya agonist tedavisinin erken dönemlerinde (gonadotropin uyarsının 5 gündünde) tamamen kesmek verilecek over cevabında düzelmeye yol açar ve tüm sonuçlarda düzelmeyi sağlayabilir.68-70 Hastaya GnRHa ile önerilen dozda medikasyon başladıktan sonra adetin 2-4. gün arasında serum östradiol (E2) tayini ve transvajinal ultrasonografik muayenesi yapılır. Östradiol seviyesi <60 pg/ml’ye düşmesi ve yapılan transvajinal ultrasonografide 10-15 mm çapından daha büyük follikül saptanmaması ile yapılan hipofizer baskılanmanın yeterli olduğu ortaya konur. Serum E2 seviyesinin baskılanmaması veya >15 mm follikül saptanmaması durumunda mevcut siklus iptal edilir. Hipofizer baskılanma saptanmış ise hastanın yaş, vücut kitle indeksi, antral folikül seviyesi ve önceki ovolasyon indüksiyonda verdiği optimum cevaba göre bireysel gonadotropin dozu ile uyum yapmaya başlanır. Genel olarak başlangıç dozu 150 ve 300 IU üriner FSH (uFSH), rekombinat FSH (rFSH) veya üriner menotropin (hMG) uygulanır. İndüksiyon şemasında step up ya da daha çok kullanılan step down yöntemi kullanılır. İlk indüksiyona başlanılsımda 3-5 gün sonra yapılan serum E2 ve follikülometreden sonra hastanın verdiği cevaba göre 1-3 gün aralarla monitorizasyona devam edilir. Çoğu kadın 7-12 günlük bir uyarı dönemi gerektirir. Genelde hedef en az 2 tane 17-18 mm çapında follikül elde etmektir ve ideal olarak birkaç tane 14-16 mm arasında olabilir.

Tipik olarak, stimulasyon sırasında endometrial kalınlık izlenmelidir. Birçok çalışmada endometrial kalınlığın ART sikluslarında prognostik önemi tartışmalıdır. Bir çoğunlarda en iyi sonuç endometrial kalınlık 8-9 mm arasında iken veya trilaminar
görünüm saptandığıında alınmaktadır. Endometrial ölçüm rutin olsada kullanımları ve işe yararlıklarını belli değildir. İndüksiyon rejimlerinde değişiklikler ve siklus iptalinin endometrial kalınlık ve görünümüne göre fark etmesi henüz karar verilmemiş bir durumdur.71 Hedeflenen follikül sayısına ulaşılduktan sonra son oosit maturasyonu için 5000-10000 IU hCG verilmelidir. Eş dozda rekominant hCG yaklaşık 250 μg’dır ve uygun bir alternatif yaklaşım.72 Küçük follikülerin daha da büyümesi için hCG enjeksiyonu geçiktirilmesi kötü yanıtlı hastalarda bir seçenek olsa da bu uygulama başarılı olmayıp tam tersi olumsuz etkilere sebeb olabilir.

2.2.5. GnRH Agonisti ve Ekzojen Gonadotropinlerle Ardıçık Olarak Yapılan Kısa Ya da Flare Protokoller

Kısa veya flare protokoller; Kısa protokolde gonadotropinlerin flare-up etkisinden yararlanır. GnRH analoglarını ilk verilisi takiben dolaşımdaki LH seviyelerinde yaklaşık 400, FSH seviyelerinde ise yaklaşık 40 kat artış olur buna Flare-up etkisi denir. Hem uzun dönemli bir GnRH agonistinin ilk baştaki agonistik etkisini hem de daha uzun tedavi döneminde uyarılan endojen gonadotropin salgısındaki baskılamayı sağlaması açısından uygun alternatif yaklaşımlardır.73,74 Özellikle kötü over kapasitesi olduğu düşünülen kişilere GnRH uygulama süresinin kısa veya dozunun azaltılması uygun stratejilerdir. Kısa protokolde GnRHa adetin 2-4 günü verilir, daha sonra dozu azaltılır ve gonadotropin enjeksiyonu adetin 3. günü başlanır. Eğer gerek olursa gonadotropin dozunda oynamalar, hCG zamanı tipki diğer protokollerde ki
gibidir. Kısa ve uzun protokolleri karşılaştıran yedi adet klinik çalışmaya içeren meta analizde her iki grupta benzer siklus iptali ve gebelik oranları saptanmıştır. 75,76

Ultra kısa GnRH agonist protokolü; flare etkisi stimüle etmek için agonist tedavisi 3 gün boyunca verilir ama daha sonra kesilir; tedavi sadece gonadotropin ile devam edilir. Kısa ve uzun protokollere göre erken LH artış daha sıktır. Ultrakısa protokol kısa ve uzun protokollere göre daha düşük başarı oranına sahiptir. 77,78

Şekil 3. GnRH agonisti ve ekzojen gonadotropinlerle ardışık olarak yapılan kısa ya da flare protokoller
2.2.6. GnRH Antagonist Eklenecek Yapılan Eksojen Gonadotropin Protokoller

İlk önce uyaran ama daha sonra inhibe eden uzun etkili agonistlerin tersine GnRH antagonistleri doz bağımlı şekilde GnRH reseptörlerini bloke ederler ve çabuk bir şekilde hipofizere inhibisyon ortaya çıkarırlar.\(^\text{81}\)

GnRH antagonistlerin agonistlere göre avantaj ve dezavantajları vardır. Avantajları; ovulasyon indüksiyon süresinin daha kısa olması, hipofiz supresyonun daha çabuk ortaya çıkması, follikül evrenin geç aşamalarına kadar uygulanabilir olması, ortaya çıkma östrojen eksikliği belirtilerinin daha hafif ve az olması, toplam kullanılan gonadotropin dozunun az olması, flare-up etkisinin olmaması nedeni ile asimetrik follikül gelişiminin daha az olması ve en önemli avantajı hiperstimülasyon riskinin daha az olabileceğidir.\(^\text{82,83}\) GnRH antagonistlerinde dezavantajları mevcuttur. Günümüz düşük dozlar ve endojen gonadotropin salgısını daha kesin durdurmaktadır. Ayrıca uzun agonist protokol kullanılanlara göre antagonist tedavisi alanlarda gebelik oranları hafif bir düşüşlük gösterebilir. Bunun nedeni GnRH antagonistlerin follikülogenez, blastomere oluşumu ve endometrial gelişmede önemli bir yere sahip mitotik programlanan etkilenmesinden dolayı olabilir.\(^\text{84,85}\)

400 pg/ml’yi geçtiğinde ya da en büyük follikül 13-14 mm çapına ulaşıldığında antagonist başlatılması şeklindedir ve flexible protokol adını alır. Her iki yöntemde de hCG enjeksiyonuna kadar medikasyona devam edilir. Araştırmalar sonucu flexible tedavi planında gerekli olan düşük doz tedavi ile daha iyi sonuç alınıyor gibi durmaktadır.86

Günlük antagonist enjeksiyonuna alternatif olarak tek ve yüksek doza setreolix enjeksiyonu (3,0 mg) uygulanabilir bir alternatifdir. Böylece LH artışını 96 saat geçiktiricektir.

GnRH antagonist protokolleri özellikle normal kapasiteli kadınlar için uygun tedavidir. Özellikle agonistlere göre OHSS sıklığının daha az olması ve son oosit maturasyonu için hCG yerine GnRH agonisti kullanılması imkanını sağlaması ilgiyi polikistik over sendromlu hastalarda ki kullanımına çekmiştir.

2.3. Oosit Toplanması

Proflaktik antibiyotik tedavisi (doksisiklin 100 mg, sefoksitin 2 gr) toplamadan 30-60 dakika önce yapılması sıktır. Alternatif olarak oral antibiyotikler (tetrasiklin, doksisiklin).

Oositlerin toplanması için vajen steril salınle birkaç kez yıkınlmalıdır. Mesane kalıcı olmayın kateterle boşaltılmalıdır. Transvajinal prob ve beraberinde tutтурulmuş aspirasyon iğnesi ile folliküller en büyük çapından aspire edilir.

Oosit toplanması sırasında ciddi komplikasyonlar olması sık değildir. İğne yerinden vajinal kanama siktır. (% 8) Overden olan akut kanama veya uterin, ovarian veya iliak damarlardan olan hematomlar nadirdir. (0,04-0,07) Post operatif pelvik enfeksiyon riski düşüktür.
2.4. Fertilizasyon

Fertilizasyon özellikle erkek faktörü ve düşük fertilizasyon ihtimali varsa konvansiyonel mikroinseminasyon ya da ICSI (İntrasitoplazmik sperm enjeksiyonu) ile sağlanabilir. Erkek faktörü infertilitesi olan IVF çiftlerin yaklaşık % 80 kadarında ICSI’de yapılmıştır.

Oosit toplanmadan hemen önce ya da sonra mastrubasyonla ile semen örneği alınmalıdır. Sperm hazırlamak içinde 2 yöntem kullanılır. Yüzme (swim-up) ve yoğunluk grandienti santrifugasyon (density grandient centrifugation) yöntemleridir. Her iki yöntemde inseminasyon için yüksek hızdaki hareketli spermleri saptayabilirse de ikinci yöntem ayrıca şekill olarak normal olanları ayırır.87,88 Ayrılan spermler daha sonra kapasitasyon amacıyla yüksek oranda protein içeren mediumda 0.5-4 saat inkubasyona bırakılır.

Her oosit 50-100 bin hareketli sperm ile beraber 37 derece, % 5’lik karbondioksitli ve % 98’lik nemli ortamda 12-128 saat kadar bekletilir. Akrosom reaksiyonu zona pellusidayı geçmek için şarttır ve sperm ile zonanın teması ile ortaya çıkmaktadır. Sperm penetrasyonu ile kortikal reaksiyon ortaya çıkarak diğer spermlerin geçişine nisbeten daha dirençli bir yapı oluşturur. Konvansiyonel IVF tekniği de % 50-70 arasında fertilizasyon sağlar.

ICSI (İntrasitoplazmik sperm enjeksiyonu); spermlerin zona pellusidayı geçme ihtiyaçlarını ortadan kaldırmak için geliştirilmiş tekniktir.

2.4.1. Sperm Toplama Teknikleri

Ejakulat olmadığında (aspermı) veya spermin nadir ya da hiç olmadığında (azospermı) fertilizasyon amacıyla kullanılabilecek spermlere ulaşmak için bazı yöntemler mevcuttur. Azospermı duktal tikanıklığa (obstruktif) veya Sertoli-cell only sendromuna, maturasyon duraklamasına veya hipospermatogeneze (nonobstruktif azospermiye) bağlı olabilir.

Şiddetli sperm sorunu olanlarda ICSI öncesi genetik değerlendirilmekte yapılmalıdır. Retrograd ejakulasyonu olanlarda, internal sfinkteri kontrol etmek amacıyla sempatomimeticler verilebilir. Bu tedavi başarısız olursa sperm masturbasyon sonrası mesaneden elde edilebilir.
Vibratuar uyarı ve elektroejekülasyon; psikojenik ejakulasyon sorunu olanlarda veya spinal kord hasarlarında (T6 altında) vibratuar uyarı çoğu zaman etkilidir. Rectal prob ile elektrik uyarısı elektroejekülasyon yöntemidir. Elektroejekülasyon vibratuar uyaryı yanıt vermeyen ve retroperitoneal cerrahi geçirenlerde uygulanabilir.89,90

Perkutan Epididimal Sperm Aspirasyonu: (PESA) Uygun bir içe ile perkutan kutanöz epididimal sperm aspirasyonu ile sperm elde edilmeye çalışılır. Bu işlem körleminin yapılışı tehlikeli bir ponksiyon olması ve epididimın vasküler olması nedeniyle kompleksasyon gelişmeye eğilimli bir yöntemdir.

Mikroskobik Epididimal Sperm Aspirasyonu: (MESA) üreme kanalı obstrüksiyonlu hastaların genişlemiş tutulumundan mikroskobik olarak aspirasyonla sperm elde etme yöntemidir.

Testiküler Sperm Ekstraksiyonu ve Aspirasyonu: (TESE) Nonobstruktif azospermilerde ve epididimal sperm aspirasyon tekniğinin uygulanamadığı durumda uygulanır. Açık mikrocerrahi sperm eldesi, perkutanöz biyopsi ve testis aspirasyonu yöntemleri vardır. Mikrocerrahi açık teknik kullanılarak erkeklerin büyük bir kısmından hatta nonobstruktifik olanlardan bile sperm elde edilmektedir.

Nonobstruktif azospermilerde TESE en uygun oosit toplama günü veya herhangi bir gün içerisinde yapılmalıdır.

2.4.2. İntrasitoplazmik Sperm Enjeksiyonu (ICSI)

Tek bir spermin çok ince bir pipet yardımcıla oosit sitoplazmasına enjekte edilmesi olarak tanımlanır. ICSI tekniğinde sperm ve oosit hazırlanıktan sonra mikroaletlerle önce sperm immobilizasyonu, spermin pipete çekilmesi, holding yardımıyla oositin tutulması pozisyon verilmesi ve sonra olarak spermin oosit içine yerleştirilmesi ile gerçekleşir.

ICSI tekniği IVF ile fertilizasyonun büyük oranda düşük ya da başarısız olacağı düşünülen, önceki IVF denemelerinde fertilizasyon olmayan, kötü sperm parametrelerine sahip, ya da testis veya epididimiden cerrahi yolla sperm elde edilebilen hasta grubu için uygulanmaktadır.

ICSI Endikasyonları,91

1- Siddetli oligo-astheno-teratozoosperm
2- Geçirilmiş başarısız IVF öyküsü veya fertilizasyon sağlanamayanlarda
3- Cerrahi olarak sperm elde edildiği durumlar (MESA ya da TESE ile elde edilmiş olması)
4- Preimplantasyon genetiği planlanan durumlar
5- Antisperm antikorları
6- Spermin oosite bağlanma ve penetrasyondaki problemler

2.5. Embriyo Transferi

Embriyo transferinde amaç; olabildiğince atravmatik ve çabuk bir şekilde embriyoları uterusa yerleştirmektir. Mümkin ise kan mukus ve uterin kontraksiyonlarından kaçınılmalıdır. Önceden deneme transferi yapılması tedaviden önce servikal dilatasyondan fayda görebilecek kadınların seçilmesi için önemli olabilir. Ultrasonografi eşliğinde düşük hacimlerde, yumuşak kateter ile yapılan transferler en iyi sonuçları vermektedir.

2.6. Luteal Faz

2.6.1. Corpus Luteum ve Luteal Steroidogenez

Follikülün çatlaması ve ovumun atılmasından önce granüloza hücrelerinin büyüklüğü artmaya başlar ve sarı pigmentin birikimi ile karakteristik vakuollü bir görünüm alırlar. Bu pigment lutein olarak bilinmekte ve luteinizasyon sürecine girmekte ve corpus luteum adını almaktadır. Ovulasyondan sonrası ilk 3 gün boyunca granuloza...

Corpus luteumda luteal hücrelerden başka endoteliyal hücreler, makrofajlar, fibroblastlar bulunmaktadır. Hücrelerin yaklaşık % 30-40 endoteliyal hücrelerdir. Bu yüksek oran korpus luteumdaki yoğun kapiller ağını bir neticesidir. Luteal damarlanma sentez için substratların alınması ve sentezlenen steroidlerin dolaşıma verilmesi için önemlidir. Damaların VEGF (Vasküller endotelial growth faktör), IGFBP-3 (İnsulin-like growth factor binding protein -3) gibi faktörler tarafından düzenlenir. Lökositler; interlökin-1 ve tümör nekroze edici faktör-β gibi bazı sitokinleri üretmektedir.99 Ayrıca lökositler anjiogenez, steroidojenez ve luteolizde görevli sitotitik enzimler, prostaglandin ve büyümeye faktörleri salgırlar.
Progesteron düzeyleri, ovulasyondan sonra hızlı bir şekilde artış göstererek LH ani artışından yaklaşık 8 gün sonra tepe değerine ulaşır. Luteal fazda yeni follikülerin gelişmemesi östrojen, progesteron, inhibinin negatif feed-back ile gonadotropin düzeylerini inhibe etmesi ile gerçekleşmektedir.

2.6.2. Stimüle Edilmiş Sikluslarda Korpus Luteum Fonksiyonu

Ovulasyon sonrası oluşan corpus luteum fonksiyonunu devam ettirebilmesi ancak luteal faz sürecince salgılanan endojen gonadotropinlerin desteğiyle yani

IVF siklusların luteal fazın farklı olmasını bir başka nedeni de oosit toplamak için yapılan follicül aspirasyon işlemidir. Bu işlem sırasında, granüloza hücrelerinin de aspire edilmesi luteal fazın bozulmasına neden olmuştur. Tüm bu veriler luteal faz desteğinin gerekliği olup olmadığını, gerekliyse bu amaçla hangi ajanların kullanılamabileceğini, bu ajanlar arasında fark olup olmadığını, luteal fazın ne zaman başlaması ve ne zaman bitmesi gerektiğini, antagonist siklularda durumun değişip değişmediği gibi sorular gündeme gelmesine neden olmuştur.

2.6.3. Luteal Faz Srasında Endometriumda Meydana Gelen Değişiklikler

Ovulasyondan sonra östrojene rağmen epitel proliferasyonu durur. Bu kontrol progesteron ile sağlanmaktadır. Sektetuar fazda stromal elemanların her biri büyümeye devam ederken yüksekliğinin sabit kalması bezlerde ve螺旋形血管に原因をもたらす。

2.6.4. Endometrial Kapasite (Endometrial Receptivite)

Embriyo implantasyonu iyi kalitedeki embriyolar ile reseptif bir endometriumun ideal bir etkileşimde olmasıına bağlıdır.

Blastokist sadece endometriyumdaki morfolojik ve moleküler değişiklikleriyle karakterizeolan reseptif fazında implante olur. Endometrial reseptivite, in vitro fertilizasyon ve embriyo transferi tedavilerinin başarısında önemli bir sınırlama oluşturur. \(^1\) Primer gereksinim progesteron hormonudur. Endometrium implantasyon zamanında midluteal fazda 10-14 mm kalınlığında olup sekretuar aktivite tepe noktasına gelmiştir ve endometrial hücrelerin lipid ve glikojen içeriği zenginleşmiştir. Böylece embriyonun beslenmesi için uygun bir ortam sağlanmıştır.

Endometrial reseptivite penceresi 28 günlük normal bir siklusun 20-24 günleri arasında sınırlıdır. \(^110\) İmplantasyon boyunca, progesteronun etkisiyle uterin boşluğu uzanan epitelial hücrelerin apikal membranları mikrovillüsleri kaybeder, geniş ve düz membran uzuıntıları gelişir. Endometrial yüzeydeki bu uzuıntılar implantasyon penceresinin ince yapısı belirteçleri olarak tanımlanmıştır ve pinopodlar olarak bilinirler. Pinopodlar uterin kavitedeki sıvıyı absorbbe ederek blastokistin endometrial epitel ile temasını sağlar. Reseptivite kazanılan bu kısa süre 48 saatten azdır. Bazı araştırmacılar uterin reseptivite gelişimi ve pinopod ekspresyonunun kesinlikle progesterona bağlı olduğunu ve bunun yanı sıra, östrojenin yüksek dozunun hem pinopod formasyonunu hem de blastokist implantasyonunu inhibe ettiğini rapor etmişler. \(^110\) Maximum pinopod formasyonu olduğunda, endometriyum lümen epiteliyal hücrelerde heparin bağlayıcı epidermal büyüme faktörlerinin yoğun bulunduğu ve pinopodlarla birlikte implantasyonda önemli bir rol oynadıkları düşündülmüştür. \(^111\) Pinopod ekspresyonu, implantasyon penceresini lokalize etmede ve endometrial reseptivitenin değerlendirilmesinde faydalı bir biyolojik belirteç olabilir. \(^1\)

Blastokist implantasyonu destekleyen endometriyum farklılaşması progesteron ve östrojen tarafından ayarlanır. Progesteron pinopod formasyonunu düzenler. Ayrıca endometrial reseptiviteyi, embriyonun appozisyon ve yapışmasını sağlayan çeşitli molekül, sitokin ve growth faktörin ekspresyonu artırma ve azatma yoluya indirekt olarak etkiler. Colony Stimulating Faktör (CSF), interlökinler, prostaglandinler, vasküler endotelial growth faktör (VEGF), glycodelin A, insülin–like growth faktör-2 (IGF-II), heparin binding epidermal growth factor (HB-EGF),
fibronectin, mucin-I (MUC-I), L-selektin ekspresyonu progesteron ile artarken, B-3 integrin ve leukemia inhibiting factor (LIF) ekspresyonu progesteron ile down regüle olmaktadır. Yine de, blastokist implantasyonda, endometrium reseptivitesini sağlayan bu moleküler mekanizma tam olarak anlaşılmış değildir. Bu alandaki ileri çalışmalar yeni iyileştirici fırsatlar sunabilir.

2.7. Luteal Faz Desteği

GnRH anologlarının kullanıldığı sikluslarda serum LH ve diğer hipofizer gonadotropin konsantrasyonları en az 10 gün daha baskılanmış olarak kalır.³ GnRH anologların kullanıldığı stimüle edilmiş sikluslarda luteal faz desteğinin kullanılması önerilmektedir.

Luteal destek amaçlı, hCG, progesteron (vajinal, oral ve intramusküler), luteal GnRH agonist ve östradiol kullanılan ajanlardır.

2.7.1. Luteal Fazda Progesteron Desteği

Progesteron, hem uterusu embriyo implantasyonu için hazırlamak hem de gebelik esnasında endometriumu stabilize etmek açısından gerekidir. Çalışmalar progesteronun ayrıca embriyo transferi sırasında ve daha sonrasında oldukça önemli olan uterusu gevşetici etkisinin olduğunu göstermiştir.

Progesteronun oral, vajinal, intramusküler uygulamaları vardır. Intramusküler yolla uygulamada 12,5-25-50 veya 100 mg arasında günlük olarak uygulanmaktadır. Ülkemizde Prolutan Depot Ampül olarak pazarda bulunan 17-alfa hidroksiprogesteron 3 günde bir 341 mg uygulaması mevcuttur (Prolutan içerisinde 500 mg/2 ml). Ayrıca günlük intramükuler progesteron uygulanabilir. (Progynex 50 mg ampül)

Vajinal uygulamada progesteronun krem formları 50-100 mg günde 2-4 kez veya 200 mg 2-3 kez önerilmektedir. Yavaş salınımlı gellerin (Crinone % 8) ise 90 mg günde 1-2 kez kullanılması önerilmektedir.

Oral progesteron formları içerisinde dydrogesterone (Duphaston) 10 mg günde 3 kez, medroksiprogesteron asetat (Farlutal) günlük 10-40 mg, mikronize formları (Progestan) 300 mg günde 2 kez ya da 200 mg günde 3-4 kez uygulanır.
Oral yol en az tercih edilen yoldur. İlk geçiş etkisine bağlı düşük serum konsantrasyonu ve biyoyararlılık söz konusudur. Ayrıca metabolizması sonucu oluşan yıkım ürünleri bilinç bulanıklığı, uyku halı, sedasyon, hipnotik, baş ağrısı gibi yan etkilere sebeb olabilir.

İntramusküler uygulama da yağlı bir taşıyıcı ajanla uygulanmaktadır. Bu uygulama yüksek etkinliğe sahiptir. Bu uygulamanın dezavantajı enjeksiyona bağlı lokal ağrı, steril abse formasyonu gelişebilir.

Vajinal uygulama, mikronize tabletler, suppozituvarlar, jel olmak üzere birçok preparat mevcuttur. Vajinal uygulama lokal ağrı, karaciğerden ilk geçiş etkisi (first pass effect), hipnotik gibi istenmeyen yan etkilerin olmaması, kullanım uygunduğu, uygulama sonrası düşük plazma yüksek doku (uterus) düzeylerin izlenmesi yan lokal endometrial etki olması nedeniyle avantajlıdır.

Lutea faz desteği ile ilgili son metaanaliz Daya ve Gunby tarafından yapılmış ve 2004 yılında Cochrone kütüphanesinde yayınlanmıştır. İntramusküler ile oral yolu karşılaştırıran iki çalışma bulunmuş, klinik gebelik ve devam eden gebelik oranları intramusküler yolda 2 kattan daha fazla artış bulunmasına rağmen bu fark istatistiksel olarak anlamlı bulunmuştur. Çalışmalarda OHSS ve canlı doğum oranları ile ilgili sonuç çıkartılamamıştır. Bu çalışmada denek sayısı az olduğu için bu sonuçlarla yorum yapmak yetersizdir.

Vajinal ile oral yolu karşılaştırıran 2 çalışma vardır. Klinik gebelik, devam eden gebelik, düşük ve çoğun gebelik oranları açısından bir fark bulunmuştur.

Vajinal ile intramusküler yolu karşılaştırıran 10 çalışmada vajinal yolda klinik gebelik oranları % 18 düşük bulunmasına rağmen bu fark istatistiksel olarak anlamlı kazanmamıştır. Ancak ilginç olarak canlı doğum oranları ve devam eden gebelik oranları vajinal yolda belirgin olarak düşük bulunmuştur. Klinik gebelik oranları ve düşük oranları açısından fark çıkışması olması, devam eden gebelik oranları konusunda elde edilen farklı oluşturulan çalışmaların heterojen olması ve canlı doğum oranlarının 2 çalışma ile belirlenmesi nedeniyle sonuçları değerlendirirken dikkatli olamamızı gerektirir.

Saucedo LLE ve arkadaşlarının yaptığı çalışmada genel olarak kabul edilen görüş vajinal yolla intramusküler yolun sonuçları benzerdir. Vajinal jel ve diğer vajinal preparatlar karşılaştırıran 4 çalışma vardır. Tüm parametreler benzer bulunmuştur.
Bu metaanalizlerden elde edilen veriler oral preparatların diğer yollara göre daha kötü sonuçlar alındığına dair kanıt ortaya koymamıştır. Oral uygulamanın dezavantajı ilk geçiş etkisine bağlı düşük serum konsantrasyonu ve metabolitlerinin yan etkileridir. Vajinal yolda intramusküler yoldan sonuçların benzer olduğu olduğunu belirtmektedir.

2.7.2. Luteal Fazda hCG Kullanımı

hCG’nin luteal fazı desteği LH’ı taklit ederek corpus luteumu stimüle etmesi. hCG enjeksiyonları overleri daha da stimüle etme dezavantajları vardır. Bu yüzden ovarian hiperstimülasyon riski artmıştır.

Daya S’nin metaanalizinde hCG ile progesteronu karşılaştıran 14 çalışma bulunmaktadır. Klinik gebelik, devam eden gebelik, düşük ve çoklu gebelik açısından her iki ajan arasında herhangi bir fark bulunamamıştır. Canlı doğum oranları hCG grubunda biraz daha fazla olma eğilimi gösterse de istatistiksel olarak fark anlamlı bulunmamıştır. İki ajan arasındaki en önemli fark ciddi OHSS oranlarının hCG grubunda önemli oranda artmıştır.

Daya S metaanalizinde progesteron +hCG ile tek başına progesteron kullanımı karşılaştıran 8 çalışma bulunmaktadır. Progesterona hCG ilave edilmesinin, tek başına progesterona bir üstünlüğü gösterilememiştir. Bu çalışmalarında elde edilen en önemli veri hCG ilave edilen grupta OHSS oranlarının barz artışdır.

2.7.3. Luteal Fazda Progesterona Östrojen Eklenmesi

Bu uygulamada östrojenlerin luteal faz desteği katkılarını progesteronların reseptör sayısını artırıcı etkisinden faydalanmaktadır. Ayrıca yüksek östrojen seviyeleri implantasyon oranları arasında negatif korelasyon olduğunu gösteren çalışmalar mevcuttur.117

2.7.4. Luteal Fazda GnRH Kullanımı

GnRH agonist uygulamanın ne tür mekanizmayla bunu sağladığı konusunu açık olmamakla birlikte hipofiz üzerine, direkt over üzerine, endometrium üzerine ve hatta embriyo üzerine farklı etkileri olduğu konusunda hipotezler ortaya atılmaktadır.118
En son yapılan çalışma Human Reproduction dergisinde yayınlanmıştır. ICSI programında bulunan 300 agonist siklusu, 300 antagonist siklusbunda olan hastalar çalışmaya alınmıştır. Tüm hastalara luteal fazda hCG, progesteron, östrojen desteği verilmiş, her grubun yarısına oosit toplanması sonrası 6. günde 0.1 mg triptorelin tek doz diğer yarısına da plasebo tek doz yapılmış ve sonuçlar karşılaştırılmıştır. Triptorelin yapılan grupta implantasyon oranları, canlı doğum oranları hen agonist hem de antagonist sikluslarında belirgin olarak artmıştır.119

Luteal fazda GnRH uygulaması rutin uygulama için erken gibi görününde yakın gelecekte rutin uygulama içine girecektir.

2.7.5. Luteal Faz Desteği Başlama ve Bitirme Zamanı

Luteal faz desteğiğinin ne zaman başlaması gerektiğini ve ne kadar devam etmesi konusunda belirgin görüş birliği yoktur.

Bu konu ile ilgili ilk çalışma Sohn ve arkadaşları tarafından yapılmıştır. OPU dan 12 saat önce ve 12 saat sonra luteal destek yapılan iki grup karşılaştırılmıştır. İlk grupta gebelik oranlarının % 12 daha düşük olduğu tespit edilmiştir.120

OPU’dan 6 gün sonra ve 3 gün sonra luteal desteği başladığı iki grup karşılaştırılmış ve ilk grupta gebelik oranları % 24 daha düşük bulunmuştur.121

Mochtar MH çalışmasında 385 hasta hCG günü, OPU günü ve ET günü luteal desteğe başlanacak şekilde randomize edilmiştir. Bu üç grup arasında kimyasal, klinik ve devam eden gebelik oranları arasında fark bulunamamıştır.122

Bu çalışmaların sonunda embriyo transfer gününde desteği başlamak mantıklı ve ekonomik görününde daha fazla çalışmaya ihtiyaç vardır.

Luteal desteğiğin ne zaman kesileceği de tam netleşmemiştir. 7. haftadan itibaren progesteronun plasentadan yapıldığı bilgisiyle luteal faz desteği 8-12. gebelik haftalarına kadar devam etmesini savunanlar çoğunluktaadır. Bu konuyla ilgili ilk çalışma Prietl ve arkadaşları tarafından yapılmıştır. IVF sonrası pozitif beta hCG si olan 120 hastanın 55 tanesine östrojen ve progesteron desteği 12. haftaya kadar devam edilmiş, 65 hastaya luteal desteği devam edilmemiştir. Tedavi verilen grupta abortus oranları belirgin olarak düşük bulunmuştur.123

Schmidt ve arkadaşlarının yaptığı çalışmada gebe kalan 200 hastaya erken gebelikte progesteron verilmesine devam edilmiş diğer 200 hastaya ise tedavi
verilmemiştir. Bu çalışmada gebelik tesbit edilmesinden sonra progesteronun kesilmesi abortus ve canlı doğum oranları üzerine etkisi olmadığı gösterilmiştir.

Stovall ve arkadaşlarının yaptığı çalışmada özellikle progesteron seviyeleri yüksek olan hastalarda gebelik tespitinden sonra luteal faz desteği kesilebileceğini iddia etmiştir.

Yapılan çalışmalar da luteal fazın ne zaman kesileceği konusunda görüş birliği yoktur. Ancak gebelik testi pozitif olduktan sonra desteğin kesileceği konusunda kanıtlar ortaya koymaktadır. Çıkarılacak en güçlü kanıt 12. gebelik haftasına kadar devam etmenin gereksiz olduğu'dur.
3. MATERIAL VE METOD

3.1. Hasta Seçimi

Transvajinal ultrasonografi ile over volümü ve antral follikül sayısı belirlendi. Histerosalpingografi ile endometrial kavite ve tubalar değerlendirildi. Hastalar; erkek faktörü, yaş faktörü (38 ve üstü yaş grubu), açıklanamayan faktör, tubal faktör endikasyonları nedeniyle IVF-ICSI-ET için hazırlandı. Çalışmamızda endometriozis ayrı bir grup olarak alınmadı.

3.2. Ovulasyon İndüksiyon Protokolü

seviyesi belirlenmek üzere kontrole çağrıldı. Hastanın cevabına göre gonadotropin dozu tekrar ayarlandı ya da aynı dozda idame ettirildi.

Seri ultrasonografi kontrolleri ve serum E2 kontrollerinden sonra 18 mm’den büyük en az 2-3 follikül geliştiği ya da hastanın isteği ve sağlıklı güvencesinin sunduğunu imkanları kullanmak isteyen hastalarda 18 mm’den büyük tek follikül gelişse bile oosit toplama işlemi planlandı. hCG (Pregnyl 5000 IU) ya da rekombinant hCG (Ovitrelle 250 µg) gece 21:00-24:00 arasında hCG 10.000 IU intramusküler ya da 250 µg rekombinant hCG subcutan uygulandı.

3.3. Oosit Toplanması

6.5 Mhz’lık vajinal proba (Medison Digital Sonoace 5500) steril jel uygulandıktan sonra steril prezervatif giydirildi ve metal rehber proba takılarak sabitlendi. İğne (MDT-Medical development 8 Technology BU 17 qauqe / 15×300mm) aspiratöre (Labotect Aspirator 4014) bağlı ve prob vajene yerleştirilip überin lokalizasyonu belirlendi. Steril aspirasyon iğnesi proba bağlı quide içinde geçirtirerek fornikse yöneldirildi. Aspire edilecek follikül ultrasonografi cihazının ekranlarındaki rehber çizgi üzerine getirilerek iğne ile delindi ve ortalama (-150) mmHg basınçla aspire edildi. Follikül kollapsından sonra birbirişik folliküle geçildi. Aspire edilen follikül
sıvısı daha önceden ısıtılmış olan falkon tüplerde toplandı ve hemen bitişikteki embriyoloji laboratuvarına teslim edildi.

OPU yapılan hasta anestezi doktoru tarafından vital bulguları takip edildi. Kanama kontrolünü takiben hasta yatak ıstırahattine alındı. İşlemin yapıldığı günden embryo transfer gününe kadar günde 2 kez Tetrasiklin antibiyotik profilaksisi uygulandı.

Bu arada erkek eşden alınan semen, işlemden geçirilerek yüzürlüldü. Hastalar 2-3 günlük cinsel perhizden sonra masturbasyon yaparak semen verdiler. Sperm örneği alındıktan sonra 1 hacme 1 hacim DMEM (Dulbecco’s minimum essential medium Sigma D-5796) konuldu. 1 cc’lik plastik pipet ile yaklaşık bir dakika pipetting yapıldı. Hücre süspansiyonu olan medium inkübatörde 20-25 dakika kadar bekletildi. Numune tüp alındı ve 2500 rpm’de 20 dk santrifüj edildi. Tüm supernatant atıldı, ancak pipetle negatif basınç uygulanırken türbulans olmasına dikkat edildi. Pellet 2 cc meydum ile yeni pipette homojenize edildi ve bu şekilde 5 dakika inkübatörde bekletildi. İkinci santrifüj 2000 rpm’de 10 dakika yapıldı. Pelletin üzerine 0.6 cc meydum konuldu. 45° açı ile tüp 60 dakika bekletildi. Makler kamerasında + 3 ve + 4 olanlar sayıldı.

Azospermi olan hastalara ürolog tarafından TESE işlemi uygulandı.
3.4. ICSI İşlemi

Uygulama, damlacıklar halinde yerleştirilen HEPES tamponlu medyumda yapıldı. Oosit sayısına göre bu damlacıklar petri kabına belli bir düzenle konuldu. Spermlerin konulacağı PVP (polyvinlypyrrolidone) damlacığı da bunların kenarına konularak hepsinin üzerine mineral yağ ile kapatıldı. PVP içine inceltilmiş pastör pipetyle sperm süspansiyonun kenarından aspire edilen spermler konuldu.

3.5. Luteal Faz Desteği

Hastalar rastgele olarak ya tek başına vajinal yolla progesteron jel (Crinone % 8 vaginal jel 90 mg progesteron)gende bir kez ya da transdermal östradiol (Climara forte transdermal sistem -25 cm²’lik flaster 7,8 mg estradiol içerir)haftada bir ve aynı doz vajinal progesteron jel aldılar. Progesteron ve östradiol alanlar 1. gruba, sadece progesteron alanlar 2. gruba dahil edildi. Tedaviye oosit toplandığı gün başlandı. β-hCG sonucuna göre devamına karar verildi. β-hCG negatif ise her iki tedavi kesildi. β-hCG pozitif ise östradiol tedavisi kesilip, progesteron desteği 12. gebelik haftasına kadar devam edildi. Ayrıca oosit toplanırken hastalar 3 gün süreyle metilprednisolon 16 mg / gün (Prednol 16 mg) aldılar.

3.6. Embriyo Transferi

Transferden sonra hasta yatağa yatmış, 2 saatlik istirahat edildi. 3 gün sonra embriyo transferi gerçekleştirildi. Tüm hastalara oosit toplandıktan sonra 3 gün sonra embriyo transferi gerçekleştirildi. 12 gün sonra serum E2 düzeylerine bakıldı. Embriyo transferinden 12 gün sonra β-hCG bakıldı.
3.7. Hormonal Ölçümler

E2 ölçümleri katalog numarası 03000079 122 olan ticari kit kullanılarak sistem Electrochemiluminescence İmmunoassay (ECLIA) yöntemiyle Roche preanalitik modular sistem (Modular Analytics E-170) cihazında çalışıldı.

FSH ölçümleri katalog numarası 11775863 122 olan ticari kit kullanılarak Electrochemiluminescence İmmunoassay (ECLIA) yöntemiyle Roche preanalitik modular sistem(Modular Analytics E-170) cihazında çalışıldı.

B-hCG ölçümleri katalog numarası 03271749 190 olan ticari kit kullanılarak Electrochemiluminescence İmmunoassay (ECLIA) yöntemiyle Roche preanalitik modular sistem (Modular Analytics E-170) cihazında çalışıldı.

3.8. İstatistiksel Yöntem

Verilerin istatistiksel analizinde SPSS 17.0 paket programı kullanıldı. Kategorik ölçümler sayı ve yüzde olarak, sürekli ölçümlerse ortalama ve standart sapma (gerekli yerlerde ortanca ve minimum - maksimum) olarak özetlendi. Kategorik ölçümlerin gruplar arasında karşılaştırılmasında Ki Kare test istatistiği kullanıldı. Gruplar arasında sürekli ölçümlerin karşılaştırılmasında varsayımların sağlanmasi durumunda Bağımsız gruplarda t testi varsayımların sağlanmaması durumunda ise Mann Whitney U testi kullanıldı. Hamile olan ve olmayanlarda kadın yaş, erkek yaş, infertilite süresi ve kullanılan Gonadotropin miktarı arasındaki ilişki Sperman Korelasyon katsayısı ile incelendi. Tüm testlerde istatistiksel önem düzeyi 0.05 olarak bulund
4. BULGULAR

1. Gruptaki hastaların 27 (% 38)’sine erkek faktörü, 1. gruptaki hastaların 31 (% 43,7), 2. grupta ise 38 (% 53,6) hasta açıklamayan infertilite, 1. Grupta 7 (% 9,9), 2. Grupta 2 (% 2,8) hastaya tubal faktör, 1. grupta 4 (% 5,6), 2.grupta 2 (% 2,8) yaş faktörü, 1.grupta 2 (% 2,8), 2.grupta 2 (% 2,8) hasta yaş + erkek faktörü nedeniyle IVF-ICSI-ET işlemi uygulandı. (Tablo 2)

1. gruptaki 71 hastaya rekombinant FSH (rFSH) başlandı.1. gruptaki 23 hastaya rFSH ilave olarak Human Menopozal Gonadotropin (hMG), 2. Gruptaki 71 hastaya da rFSH başladı ve 18 hastaya hMG ilave edildi.1. grupta 3, 2. grupta 4 hastaya da pürifiye FSH ilave edildi.

1. gruptaki 7 (% 25,9), 2.grupta 13 (48,1) hastaya erkek faktörü nedeniyle TESE işlemi uygulandı.

Çalışmaya katılan her iki grup arasında kadın yaşı, erkek yaşı, infertilite süresi açısından anlamlı fark bulunamadı (Tablo 3).

<table>
<thead>
<tr>
<th>İnfertilite Sebepleri</th>
<th>Grup 1</th>
<th>Grup 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erkek Faktörü</td>
<td>27 (% 38)</td>
<td>27 (% 38)</td>
</tr>
<tr>
<td>Açıklanamayan İnfertilite</td>
<td>31 (% 43,7)</td>
<td>38 (% 53,6)</td>
</tr>
<tr>
<td>Tubal Faktör</td>
<td>7 (% 9,9)</td>
<td>2 (% 2,8)</td>
</tr>
<tr>
<td>Yaş Faktörü</td>
<td>4 (% 5,6)</td>
<td>2 (% 2,8)</td>
</tr>
<tr>
<td>Yaş + Erkek Faktörü</td>
<td>2 (% 2,8)</td>
<td>2 (% 2,8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ölçümler</th>
<th>Grup 1</th>
<th>Grup 2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadın Yaşı</td>
<td>Ort. 30,92 ± 4,77 (22-40)</td>
<td>Ort. 31,13 ± 4,748 (20-39)</td>
<td>0,792</td>
</tr>
<tr>
<td>Erkek Yaşı</td>
<td>Ort. 34,28 ± 5,55 (25-51)</td>
<td>Ort. 35,24 ± 5,25 (24-50)</td>
<td>0,293</td>
</tr>
<tr>
<td>İnfertilite Süresi</td>
<td>Ort. 7,24 ± 3,42 (1-15)</td>
<td>Ort. 7,69 ± 4,25 (1-18)</td>
<td>0,834</td>
</tr>
</tbody>
</table>
Her iki grup arasında bazal FSH, ortalama kullanılan gonadotropin dozu, indüksiyon süresi, matür follicül seviyesi, hCG gününe E2 düzeyi, toplanan oosit sayısı, fertilize oosit sayısı, transfer edilen embriyo sayısı, transfer gündündeki endometriyal kalınlık ve E2 seviyesi, βHCG gündündeki E2 seviyelerinde anlamli farklılık saptanmamıştır (Tablo 4).

İki grup arasında bazal E2 düzeyleri ne bakıldığında 1. grup için 38,79 ± 14,57, 2. grup için ise 45,74 ± 15,45 hesaplandı. Bu farklılık istatistiksel olarak anlamlı bulundu (p= 0,005). Bu farklılık klinik olarak göz önünde bulundurulmadı (Tablo 4).

hCG gündündeki endometriyal kalınlık grup 1’de 10,25±1,94, 2. grupta 9,55 ±2,29 olarak saptandı. Bu durumda grup 1 de grup 2’e göre yüksek bulunmuştur. Bu fark istatistiksel olarak sınırdaki anlamlı bulunmuştur. Bu fark çalışmamızda anlamlı kabul edilmedi (p= 0,054) (Tablo 4).

Tablo 4. Grup Özellikleri

<table>
<thead>
<tr>
<th>Özellik</th>
<th>Grup 1</th>
<th>Grup 2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bazal FSH</td>
<td>7,07 ± 1,90</td>
<td>6,98 ± 1,54</td>
<td>0,744</td>
</tr>
<tr>
<td>Bazal E2</td>
<td>38,79 ± 14,57</td>
<td>45,74 ± 15,45</td>
<td>0,005</td>
</tr>
<tr>
<td>Kullanılan Ortalama Gonadotropin Dozu</td>
<td>2148,94 ± 727,22</td>
<td>2221,41 ± 714,62</td>
<td>0,459</td>
</tr>
<tr>
<td>Ortalama Indüksiyon Süresi</td>
<td>10,63 ± 1,94</td>
<td>10,79 ± 1,91</td>
<td>0,633</td>
</tr>
<tr>
<td>Matür Folükül Sayısı</td>
<td>3,63 ± 1,56</td>
<td>3,80 ± 1,73</td>
<td>0,790</td>
</tr>
<tr>
<td>HCG Günündeki Endometriyal Kalınlık</td>
<td>10,25 ± 1,95</td>
<td>9,55 ± 2,29</td>
<td>0,054</td>
</tr>
<tr>
<td>HCG Günündeki E2 Düzeyi</td>
<td>1845,0 ± 1050,85</td>
<td>1929,78 ± 1050,65</td>
<td>0,677</td>
</tr>
<tr>
<td>Oosit Sayısı</td>
<td>7,58 ± 4,66</td>
<td>8,51 ± 6,23</td>
<td>0,681</td>
</tr>
<tr>
<td>Fertilize Oosit Sayısı</td>
<td>3,46 ± 2,46</td>
<td>3,86 ± 2,95</td>
<td>0,458</td>
</tr>
<tr>
<td>Transfer Edilen Embriyo Sayısı</td>
<td>2,38 ± 0,78</td>
<td>2,48 ± 0,75</td>
<td>0,413</td>
</tr>
<tr>
<td>Transfer Sirasındaki Endometriyal Kalınlık</td>
<td>10,77 ± 2,58</td>
<td>10,50 ± 2,70</td>
<td>0,551</td>
</tr>
<tr>
<td>Transfer Sirasındaki E2 Düzeyi</td>
<td>1214,25 ± 833,60</td>
<td>1303,0 ± 871,44</td>
<td>0,363</td>
</tr>
<tr>
<td>ET sonra 12. GünE2 Düzeyi</td>
<td>191,34 ± 275,11</td>
<td>156,24 ± 215,56</td>
<td>0,777</td>
</tr>
</tbody>
</table>

Embriyo transfer sonrası 12. gün βHCG pozitifiği 1. grupta 20 (% 28,2) hastada, 2. Grupta 18 (% 25,4) hastada tesbit edildi. Çalışmadaki tüm hastalara bakıldığında 142 hastanın 38 (26,8) tanesinde 12. gün βHCG pozitifiği saptandı. Embriyo transfer sonrası 12. gün βHCG pozitifiği yönünden istatistiksel olarak anlamlı fark saptanmadı (p=0,850).

Devam eden gebelik, 12. gebelik haftasına ulaşan ve devam eden gebelikler olarak kabul edildi. 1. grupta 20 gebeliğin 11 (% 55,0) tanesi 12. haftayı geçti.
2. gruptaki 18 gebeliğin 10 tanesi (% 55,6) 12. gebelik haftasını geçti. Devam eden gebelik oranları için iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 1,0).

Biyokimyasal Abortus serum biyokimyasında βHCG pozitifliği saptanan ancak ultrasonografide gebelik saptanmayan ve daha sonra βHCG pozitifliği kaybolan hastalar alındı. 1. grupta 20 hastanın 7 (% 35,0) tanesinde, 2.grupta 18 hastanın 6 (% 33,3) tanesinde biyokimyasal abortus olduğu. Biyokimyasal abortus oranları açısından iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 1,0).

Klinik abortus gebeliginin 6. Haftasında yapılan transvajinal ultrasonografi sonrası fetal kardiak aktivitenin görüldükten sonra gerçekleşen abortusdur. 1 grupta 20 hastadan 1 kişi (% 5,0), 2. Grupta 18 hastadan 1 kişi (% 5,6) klinik abortus görüldü. Klinik abortus yönünden iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 1,0).

Her iki grupta da çokul gebelik saptandı. 1.grupta 5 hasta ikiz 2. grupta ise 3 hastada ikiz ve 2. grupta bir hastada üçüz görüldü. Çokul gebelik görülme açısından iki grup arasında anlamlı farklılık saptanmadı (p= 0,444).

1. gruptaki hastaların 4 tanesi canlı doğum yapmış geri kalan 7 gebelin gebelikleri devam etmektedir. 2. gruptaki 6 hasta canlı doğum yapmış geri kalan 4 gebelin gebelikleri devam etmektedir.

Tablo 5. Grupların Gebelik Oranları

<table>
<thead>
<tr>
<th></th>
<th>Grup 1</th>
<th>Grup 2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>βHCG Pozitifliği</td>
<td>20 (% 28,2)</td>
<td>18 (% 25,4)</td>
<td>0,850</td>
</tr>
<tr>
<td>Biyokimyasal Abortus</td>
<td>7 (%9,9)</td>
<td>6 (% 8,5)</td>
<td>1,0</td>
</tr>
<tr>
<td>Klinik Abortus</td>
<td>1 (% 1,4)</td>
<td>1 (% 1,4)</td>
<td>1,0</td>
</tr>
<tr>
<td>Devam Eden Gebelik</td>
<td>11 (% 15,5)</td>
<td>10 (% 14,1)</td>
<td>1,0</td>
</tr>
<tr>
<td>Canlı Doğum</td>
<td>4 (% 5,6)</td>
<td>6 (% 8,5)</td>
<td>0,745</td>
</tr>
<tr>
<td>Ektopik Gebelik</td>
<td>1 (% 1,4)</td>
<td>1 (% 1,4)</td>
<td>1,0</td>
</tr>
</tbody>
</table>
HCG gününde bakılan serum E2 düzeyi grup 1 için 1845,0±1050,85, grup 2 için ise 1929 ± 1050,65 bulundu. İki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 0,677) (Tablo 6, Şekil 5).

Embriyo transfer gününde bakılan E2 seviyesi iki grup arasında karşılaştırıldığında anlamlı farklılık saptanmadı (p=0,363) (Tablo 6, Şekil 5).

Siklusların 12. gününde βHCG bakıldığı gün serum E2 seviyelerine bakıldı. Her iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 0,777) (Tablo 6, Şekil 5).

Şekil 5. Grup I ve II’nin E2 düzeyleri
Tablo 6. Serum E2 Seviyeleri

<table>
<thead>
<tr>
<th>SERUM E2 SEVIYESİ</th>
<th>GRUP I</th>
<th>GRUP II</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCG gününde</td>
<td>1845,00 ± 1050,85</td>
<td>1929,78 ± 1050,65</td>
<td>0,677</td>
</tr>
<tr>
<td>Embriyo transfer gününde (ET)</td>
<td>1214,25 ± 833,60</td>
<td>1303,07 ± 871,44</td>
<td>0,363</td>
</tr>
<tr>
<td>ET nin12. Günü</td>
<td>191,34 ± 275,11</td>
<td>156,24 ± 215,56</td>
<td>0,777</td>
</tr>
</tbody>
</table>

Gebelik oluşan ve oluşmayan sikluslarda gruplarından bağımsız olarak karşılaştırıldığında kadın yaşı, erkek yaşı, ortalama kullanılan gonadotropin miktarları açısından istatistiksel olarak anlamlı fark bulundu. Gebe olan hasta grubunda kadın yaşı, erkek yaşı daha küçük ve kullanılan gonadotropin miktarı daha az bulunmuştur. Ancak bazal E2 ve FSH düzeyleri arasında istatistiksel olarak fark anlamlı bulunmadı (Tablo 7).

Tablo 7. Gebelik Oluşan ve Oluşmayan Sikluslarda Gruplarından Bağımsız Olarak Özellikleri (P < 0,05)

<table>
<thead>
<tr>
<th></th>
<th>Gebelik oluşanlar (38)</th>
<th>Gebelik oluşmayanlar (104)</th>
<th>P değerleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bazal FSH</td>
<td>6,71 ± 1,35</td>
<td>7,13 ± 1,83</td>
<td>0,198</td>
</tr>
<tr>
<td>Bazal E2</td>
<td>42,84 ± 13,32</td>
<td>42,05 ± 16,09</td>
<td>0,788</td>
</tr>
<tr>
<td>Kadın Yaşı</td>
<td>29,68 ± 4,51</td>
<td>31,51 ± 4,75</td>
<td>0,042</td>
</tr>
<tr>
<td>Erkek Yaşı</td>
<td>33,11 ± 4,58</td>
<td>35,37 ± 5,57</td>
<td>0,027</td>
</tr>
<tr>
<td>Ortalama kullanılan gonadotropin miktarı</td>
<td>1948,68 ± 572,42</td>
<td>2271,59 ± 749,93</td>
<td>0,017</td>
</tr>
</tbody>
</table>

Gebe olan ve olmayan grupta bazal E2 seviyesi, gebe olan için 42,84 ± 13,32 gebe olmayan için ise 42,05 ± 16,09 bulunmuştur. Gebe olan ve olmayan arasında istatistiksel olarak anlamlı fark saptanmamıştır (p= 0,788).

Gebe olan ve olmayan grupta hCG gününde E2 seviyesi, gebe olan için 1825,22 ± 1011,35, gebe olmayan için ise 1909,99 ± 1064,81 bulunmuştur. Gebe olan ve olmayan arasında istatistiksel olarak anlamlı fark saptanmamıştır (p= 0,735).

Gebe olan ve olmayan grupta embriyo transfer gününde yani erken luteal fazda bakılan E2 düzeyi, gebe olan için 1357,224 ± 962,51, gebe olmayan grupta 1222,64± 808,32 olarak saptandı. Arasında istatistiksel olarak anlamlı farklilik saptanmamıştır (p= 0,474) (Şekil 6).
Şekil 7. Gebe olan ve olmayan grupta E2 düzeyleri

Gebelik olanların 12. gün E2 seviyeleri gebe olmayanlara göre her iki grupta da anlamlı olarak yüksek bulunmuştur (p= 0,00) (Tablo 8, Şekil 8).

Tablo 8. ET’nin 12. Gününde E2 Seviyeleri

<table>
<thead>
<tr>
<th>12. Gündeki E2 Düzeyi</th>
<th>Grup 1</th>
<th>Grup 2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebelik Olan</td>
<td>474,44 ± 388,87</td>
<td>286,69 ± 297,41</td>
<td>0,00</td>
</tr>
<tr>
<td>Gebelik Olmayan</td>
<td>80,32 ± 62,17</td>
<td>111,94 ± 160,44</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Şekil 8. ET sonrası 12. günde gebe olan ve olmayan sikluslarda serum östradiol seviyeleri
5. TARTIŞMA

Embriyo implantasyon aşaması halen reproduktif başarıyı sınırlayan en önemli adım olarak karşımıza çıkmaktadır. Embriyo implantasyonu embriyo ve endometriyumun yapısal ve morfolojik değişikliklerini içeren kompleks ve dinamik bir süreçtir.

Daya S ve Gunby J tarafından yapılan Cochrane kütüphanesinde yayınlanan metaanalizde hCG veya progesteron kullanımının IVF sikluslarında gerekli olduğunu göstermiştir. Bu metaanalizde hCG ve progesteron desteği de karşılaştırılmıştır.
Progesterona hCG ilave edilmesinin, tek başına progesterona bir üstünlüğü gösterilememiştir. Bu çalışmada en önemli veri hCG ilave edilen grupta OHSS oranlarındaki bariz artıştır.113

Luteal faz desteği amacıyla östrojenlerin verilmesi ilgili fikir birliği olmamakla birlikte bu konuda birçok çalışma vardır.

GnRH/hMG uyarılmış sikluslarda luteal fazın başlangıcındaki östradiol düzeylerinin çok yüksek seyretmesine bağlı luteal östradiol desteği yararlı olmadığını savunan araştırmalar bulunmaktadır.131 Uyarılmış sikluslarda luteal fazın başlangıcında görülen yüksek östrojen düzeyi LH üzerine güçlü negatif feedback uygulamakta ve luteal fazın daha kısa sürmesine neden olmaktadır.127 Normal ovulatuar sikluslarda ise Becker ve arkadaşlarının yaptığı çalışmada luteal fazda kısaltma saptamışlardır. Bunun nedeni ise corpus luteumun oluşumu ve gonadotropin etkisinden bağımsız olarak 3 güne kadar luteoliz etkilerini önleyebilmesidir.132

Ovulasyon indüksiyonu ile çok sayıda follikülün gelişmesi ile östradiol seviyeleri fizyolojik sınırların üzerine çıkmaktadır. Yüksek östradiol seviyelerinin endometriyum reseptivitesini bozduğunu gösteren çalışmalar da vardır.110 Bizim çalışmamızda luteal fazın başlangıcında ölçülen E2 düzeyleri (Embriyo transfer günü) gruplardan bağımsız olarak gebe olan ve olmayan grupta bakılan E2 düzeyi, gebe olan için 1357,224 ± 962,51, gebe olmayan grupta 1222,64± 808,32 olarak saptandı. Arasında istatistiksel olarak anlamalı farklılık saptanmamıştır (p= 0,474).

Saharara ve Mc Clamrock çalışmasında ise hCG günü ölçülen östradiol değerinin luteal faz ortasındaki östradiol değerine oranının IVF başarısı için bir markör olup olmayacağını araştırmış ve bu oranın IVF başarısı için oldukça iyi bir markör olduğunu ifade etmiştir. Bu çalışmanın neticesinde östradiol seviyelerinin hızlı düşüşünün endometriyum bütünlüğünü bozduğu iddia edilmiştir. Bu oranın 5’in üzerine çıkmasına gebelik oranının düştüğü bildirmektedir.133 763 siklus kapsayan başka bir çalışmada Saharara’nın bulguların aksine östradiolün luteal fazda hızlı düşüşünün yardımıyla üreme siklukların başarısı üzerinde olumsuz etkisi olmadığını göstermişlerdir.134 Fakat bu iki çalışmanın farklı Saharara’nın luteal fazdaki östradiol ölçümleri hCG uygulamasından sonra 8. gün diğer çalışma ise (Hung Yu Ng ve arkadaşları) 10. gün yapılmıştır. En son 2009 yılında Ghanem ve arkadaşlarının yaptığı çalışmada da hCG günü ölçülen E2’nin midluteal E2’ye oranı ne kadar düşük olursa
gebeklik oranları iyi, düşük oranlarının az görüldüğü göstermiştir. Bu çalışmalar da luteal fazda östrojenin önemi ve östrojenin hızlı azalmasının gebelik oranlarını düşürdüğü gösterilmiştir. Çalışmamızda mid luteal faz östrojen seviyesi ölçülmediği için bu parametre değerlendirilmedi.

Luteal fazda yüksek E2 değerleri ile gebelik arasında pozitif korelasyonu gösteren çalışmalarla karşı Muasher ve arkadaşlarının yaptığı çalışmada, luteal fazın 11 gününe kadar, döllenmenin gerçekleştiği ve gerçekleşmediği sikluslar karşılaştırılmış serum E2 düzeyleri arasında anlamlı bir fark bulunmamıştır.

Serum östradiol ve progesteron konsantrasyonları korpus luteum fonksiyonu yansımaktadır ve erken gebelikin desteklenmesinde önemli bir faktördür. Laufer ve arkadaşları östradiol ve progesteron seviyelerinin gebelik oluştuğu doğal sikluslarda devamlı bir artış gösterdiğiğini bildirmiştir. Benzer şekilde ovulasyon indüksiyonu yapılan ve gebelik elde edilen ve edilmeyen sikluslarda gebelik elde edilende geç luteal östradiol seviyelerinin artışını göstermiştir. Özellikle 12. günde E2 yükseltilerini embriyonun salgıladığı hCG’nin korpus luteumu uyarmasından dolayıdır.

Çalışmamızda gebelik olanların embriyo transferi sonrası 12. gün yani geç luteal fazda E2 seviyeleri gebe olmayanlara göre her iki grupta anlamlı olarak yüksek bulunmuştur (p= 0,00).

Luteal faz desteği amacıyla östrojenlerin verilmesi ilgili fikir birliği olmamakla birlikte bu konuda birçok çalışma vardır. Smitz ve arkadaşlarının 1993’de yaptığı çalışmada 6 mg oral Estradiol valerat kullanılmış Progesterona östrojen ilavesinin faydası gösterilememiştir. 2000 yılında Farhi ve arkadaşlarının yaptığı çalışmada luteal fazda progesterona birlikte 4 mg estradiol valerat kullanımının sadece progesteron kullanımına göre daha iyi bir destek sağladığı vurgulanmıştır. Bu çalışmada luteal faz için hCG verilmesinin kontrendike olduğu ovaryan hiperstimulasyon durumlarında progesterona ek olarak östradiolün kullanılmasının faydali olacağını belirtmişlerdir.

Görkemli ve arkadaşlarının 2004 yılındaki çalışmasında IVF-ICSI-ET sikluslarına luteal fazda vajinal progesterona ek olarak transdermal östradiol 100 µgr/gün ilave edilerek sadece progesterona alan ile iki grupu karşılaştırılmış ve östrojen
desteğini transferden 14 gün sonra kesmiştir. Östrojen alan gruplarda gebelik oranları ve devam eden gebelik oranları daha yüksek bulunmuştur. Sadece vajinal progesteron alanlarda βhCG pozitifiği % 13,5, E2 + P alan grupta ise % 38,57 olarak saptanmıştır. Devam eden gebelik oranları ise Progesteron alan grupta % 9,45’e karşılık östrojen + progesteron grupunda ise % 31,4 olarak bulunmuştur. Biyokimyasal abortus E2+P alan grup için % 6,75, P alan grup için % 4,05 bulunmuş olup iki grup arasında anlamılı fark saptanmıştır. Klinik abortus açısından ise E2+ P grubunda % 6,75, P grubunda ise % 0,0 saptanmış olup klinik abortus östrojen alan grupta anlamılı olarak yüksek saptanmıştır. 140

Lukaszuk ve arkadaşlarının 2005’de yaptığı çalışmada GnRHa ile yapılan uzun protokollü IVF-ICSI-ET sikluslarında luteal faz desteği olarak oosit toplandığı gün progesterona 2 mg ya da 6 mg östrojen eklenmesi ile sadece progesteron verilmesi karşılaştırılmıştır. Çalışmada 6 mg E2 eklenmesi, hiç eklenmememesine ve 2 mg eklenmesine kıyasla implantasyon ve gebelik oranlarında belirgin artış izlenmiştir. Sadece progesteron grupunda gebelik oranı % 23,1, 2 mg E2 ve progesteron alan grupta % 32,8, 6 mg E2 ve progesteron alan grup için de % 51,3 (p=<0,01) saptanmıştır. Spontan abortus oranları sadece progesteron grupunda % 22,2, 2 mg E2+P için % 17,4, 6 mg E2+P için ise % 12,8 olarak bulunmuş gruptar karşılaştırıldığında istatistiksel olarak abortus yönünden farklılık saptanmamıştır. 141

Drakakis ve arkadaşlarının yaptığı 2007’deki çalışmada luteal faza oosit toplandığı gün 6 mg Estradiol valerate 15 gün + 4 günde bir 50 µg transdermal östrojen kullanılarak yapılmıştır. Östrojen + progesteron alan grupta klinik gebelik % 33,3, sadece progesteron alan gruptada klinik gebelik ise % 13,2 olarak bulunmuştur. Bu çalışmada biyokimyasal abortus E2+ P % 10,3, P grupu için % 2,6 saptanmıştır. Sonuçta klinik gebelik oranı östrojen + progesteron alan grupta yüksek olup bu grup da biyokimyasal abortusda daha yüksektir. 127

Serna ve arkadaşlarının yaptığı 2008 çalışmada da transdermal östradiol 100 µg kullanılmıştır. Progesteron oosit toplandığı gün başlanırken, çalışma grupına östrojen 100 µg/gün haftada 2 kez embriyo transfer günü başlanmıştır. Luteal desteği çalışma grupunda 10. gebelik haftasına kadar devam ettirildi. Karaciğerden ilk geçiş eliminasyonu vaginal ve transdermal uygulama da azaltmaktadır. βhCG pozitifiği sadece progesteron alan grup için % 49,4 iken E2 + P grubunda bu oran % 48,1, devam
eden gebelik ise Progesteron grupu için % 42 iken Progesteron + transdermal östrojen alan grup için ise % 41,8 olarak, abortus progesteron grupu için % 15,0 diğer grup için ise % 13,2 saptanmıştır. Bu çalışmada luteal fazın östrojen ile desteklenmesi ile desteklenmemesi arasında fark bulunamamıştır.142

Engmann ve arkadaşlarının 2008 yaptığı çalışmada luteal destek amacıyla intramüsküler progesterona ilave olarak günde 2 kez vajinal östrojen verilmiştir. Progesteron oosit toplandığı günde başlanıp ultrasonografide fetal kardiak aktivite görülüne kadar devam ettirilmiştir. Vajinal östrojen de embryo transfer gününde başlayıp ultrasonografide fetal kardiak aktivite görülüne kadar devam etmiştir. Vajinal uygulamada daha tutarlı serum E2 seviyeleri ve hedef organa direkt dağılımı beklenmekte olup buna rağmen bu çalışmada E2 desteği belirgin avantaj gösterilmemiştir. Vajinal uygulamada oral uygulamaya göre endomüriyuma öncellikle absorbsiyonu sağlar bu da yüksek endomüriyal / serum E2 oranını sağlar. Vajinal östrojen alan grup ile almayan grup arasında gebelik oranları E2+P % 70,2, P grubu için ise % 72,0 olarak saptanmıştır (p=0,8). Devam eden gebelik oranları P grubu için % 56,1 / E2+P için ise % 47,6) arasında fark bulunmuştur (p=0,3). Biyokimyasal abortus açısından bu çalışmada E2+P grubunda % 22,0 P grubunda ise % 8,5 olarak bulunmuş olup progesteron + östrojen alan grup için anlamlı olarak yüksek (p= 0,04). Klinik abortus açısından ise E2+P grup için % 8,5, P grup için ise % 13,6 olup anlamlı fark yoktur (p= 0,38).143

Ghanem ve arkadaşlarının yaptığı 2009’da çalışmadı 3 grup alınmıştır. 1. Grup sadece intramüsküler progesteron, 2. Grup aynı progesteron dozuna ilave olarak 6 mg oral E2 valerate, 3. Grup ise progesterona ilave 3 doz halinde hCG verildi. Gruplara progesteron ve estradiol valerate oosit toplandığı gün hCG ise embryo transfer günü başlanmıştır. Gebelik testinin sonucuna kadar devam etmiştir. Grup 2 de grup 1’e göre klinik gebelik oranları ve implantasyon oranları yüksek bulunmuştur (% 40,9’a karşı % 20,4 p= 0,002). Grup 2 de grup 3’e göre klinik gebelik ve implantasyon oranları yüksek bulunmuştur (% 40,9’a % 29,5 p>0,5). hCG, luteal desteği eklenmesi corpus luteumdan sadece progesteron değil östrojeni salgılamasını sağlar. Bu nedenle 3. gruptaki parametreler iki grupun arasında yer alır.135

Bizim çalışmamızda östrojen transdermal haftalık olarak verilmiştir. Uygulanan transdermal sistem (Climara TTS forte 25 cm2) 70 pg/ml ortalama serum

Embriyo transferinden sonraki 12. gün βHCG pozitifliği progesteron ve transdermal östrojen alan grupta 20 (% 28,2) hastada, sadece progesteron alan grupta ise 18 (% 25,4) hastada tesbit edildi. Çalışmadaki tüm hastalara bakıldığında 142 hastanın 38 (26,8) tanesinde 12. gün βHCG pozitifliği saptandı. 12. gün βHCG pozitifliği yönünden istatistiksel olarak anlamlı fark saptanmadı (p=0,850).

Biyokimyasal Abortus serum biyokimyasında βHCG pozitifliği saptanan ancak ultrasonografide gebelik saptanmayan ve daha sonra βHCG pozitifliği kaybolan hastalara bakıldığında E2+ P grupunda 7 (% 9,9) hastada, sadece P grupunda 6 (% 8,5) hastada biyokimyasal abortus görüldü. Biyokimyasal abortus oranları açısından iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 1,0).

Klinik abortus gebeliğin 6. Haftasında yapılan transvajinal ultrasonografi sonrası fetal kardiak aktivitenin görüldükten sonra gerçekleşen abortuslara bakıldığında E2+P grupunda 1 kişi (%1,4), P grupunda da 1 kişi (%1,4) klinik abortus görüldü. Klinik abortus yönünden iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 1,0).

Bizim çalışmamızda luteal faza östrojen eklenmesinin faydasi olmadığını gösteren çalışmalar ile benzer sonuca sahiptir.

Çalışmamızda GnRH agonisti ile uzun protokol uygulanmış olup, literatürdeki çalışmaların çoğunda da bu protokol ile çalışma yapılmıştır. İlk defa Fatemi ve

Çalışmamızda kullanılan östrojen transdermal ve 70 pg/ml serum konsantrasyonu oluşturacak şekilde haftada bir uygulandı. Litetürdeki çalışmalarda kullanılan östrojen dozlarından fazla değildi. Diğer çalışmalardaki transdermal östrojen uygulamaları ile oluşan serum E2 konsantrasyonları benzerdi. İmplantasyon sürecinde endometriyumdaki yüksek östradiol seviyelerinin embriyo implantasyonu üzerine direkt toksik etki gösterdiğini bildirilmiştir. 110 Yapılan araştırmalar uterus reseptivite gelişiminin temel olarak progesterona bağlı olduğu ve yüksek serum E2 düzeyleri endometriyal pinopod formasyonunu ve embriyo implantasyonunu inhibe edeceğini göstermişlerdir. 145

Engmann ve arkadaşlarının yaptığı çalışmada GnRH agonist grupunda klinik gebelik oranları düşük ve biyokimyasal abortus oranları daha yüksektir bulunmuştur. Bu çalışmada östrojen vajinal uygulanmış olup oral uygulamaya göre 10 kat serum ve 70 kat daha fazla endometriyal E2 düzeyi sağlar. 143

Drakakis ve arkadaşlarının yaptığı çalışmada da östrojen desteği alan grupta gebelik oranlarının yüksek olması karşı aynı grupta yüksek abortus hızına doğru bir meyil vardır. Bu da östradiolün endometriyal adezyon üzerine olumsuz etkisiyle açıklayabiliriz. 127

Valbuena ve arkadaşlarının yaptığı çalışmada estradiolün embriyo üzerine mi yoksa endometriyum üzerine mi etkisi olduğunu saptamaya çalışmışlar ve geç embriyo transferinin embriyo transferinde estradiolün istenmeyen etkilerini azaltıp azaltmadığı araştırılmıştır. Embriyonun adezyon sahasını bozduguna ve embriyo üzerine direkt olarak toksik etkisinin olduğunu iddia etmişlerdir. 146 Bu çalışma göz önünde bulundurulsa ovulasyon indüksiyonu asıri cevab veren kadınlarda elde edilen embriyolar o siklusda dondurulup bir sonraki siklusda transfer edilmesi düşünülebilir. 146

Bizim çalışmamızda verilen östrojen dozları çok yüksek olmayıp biyokimyasal abortus ve klinik abortus yönünden gruplar arasında anlamli fark oluşmamıştır.
Östrojen değerin ne kadar devam etmesi de tartışmalıdır. Bizim çalışmamızda gebelik testi pozitif olunca kesildi. 1950 yıllarında kullanılan dietilstilbestrol daha sonra teratojenik etkisi (vajinal adenozis) olduğu anlaşılmasının nedeniyle çalışmamızda gebelik testi pozitif olduktan sonra östrojen tedavisine devam edilmedi.

6. SONUÇLAR

Son yıllarda YÜT ilerlemelere rağmen, embriyo implantasyon aşaması halen reproduktif başarıyı sınırlayan en önemli adım olarak karşımıza çıkmaktadır. Embriyoloji laboratuar tekniklerindeki ilerlemeler mükemmel embriyoların elde edilmesine imkan verirken, transfer edilen her mükemmel embriyo endometriuma implante olmayı başaramamaktadır. İmplantasyonu artırmak için çeşitli stratejiler geliştirilmektedir. Bu çalışma da buna yönelik planlanmıştır. Bu çalışmada uzun protokol kullanılarak yapılan kontrollü ovaryan hiperstimulasyon sağlanan siklşların luteal fazına progesterona ilave olarak östrojen kullanılmamasının gebelik oranlarına etkisi araştırılmıştır. Çalışmamızda elde ettigimiz sonuçlar şunlardır:

1- Embriyo transfer sonrası 12. gün βHCG pozitifliği 1. Grupta yani östrojen + progesteron alan 20 (% 28,2) hastada, 2. grup sadece progesteron 18 (% 25,4) hastada testit edildi. Çalışmadaki tüm hastalara bakıldığında 142 hastanın 38 (26,8) tanesinde 12. gün βHCG pozitifliği saptandı.Embriyo transfer sonrası 12. gün βHCG pozitifliği yönünden istatistiksel olarak anlamlı fark saptanmadı (p=0,850).

2- Devam eden gebelik olarak, 12. gebelik haftasına ulaşan ve devam edenler kabul edildi.1. grupta 20 gebelinin 11 (% 15,5) tanesi 12. haftayı geçti. 2. gruptaki 18 gebelinin 10 tanesi (% 14,1) 12. gebelik haftasını geçti. Devam eden gebelik oranları için iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 1,0). Bizim çalışmamızda luteal faza östrojen eklenmesinin faydası bulunamamıştır.

3- Biyokimyasal Abortus serum biyokimyasında βHCG pozitifliği saptanan ancak ultrasonografide gebelik saptanmayan ve daha sonra βHCG pozitifliği kaybolan hastalar alındı. 1. grupta 7 (% 9,9) hastada, 2. grupta 6 (% 8,5) hastada biyokimyasal abortus gerçekleşt. Biyokimyasal abortus oranları açısından iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 1,0). Bizim çalışmamızda östrojen eklemek biyokimyasal abortus oranlarını etkilememiştir.

4- Klinik abortus gebelgin 6. Haftasında yapılan transvajinal ultrasonografi sonrası fetal kardiak aktivitenin görüldüğten sonra gerçekleşen abortusdur. 1 grupta 1 kişi (% 1,4), 2. Grupta da 1 kişi (% 1,4) klinik abortus görüldü. Klinik abortus yönünden iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p= 1,0).
5- Ektopik gebelik tüm sikluslarda 2 hastada görüldü. Hastaların 1 tanesi 1. grup diğeri ise 2. gruptandı. Sadece vajinal progesteron alan yani grup 2 deki ektopik gebelik nedeniyle takip edilen hasta methotreaxate tedavisi aldı. Diğer gruptaki ektopik gebelik herhangi medikal ya da cerrahi tedavi almadan takip edildi. Ektopik gebelik açısından her iki grup arasında anlamlı farklılık saptanmadı (p= 1,00).

6- Östrojen ve Progesteron kullanan grup ile sadece progesteron kullanan grup arasında HCG gününde bakılan serum E2 düzeyi açısından istatistiksel olarak anlamlı farklılık saptanmadı (p= 0,677). Embriyo transfer gününde bakılan E2 seviyesi iki grup arasında karşılaştırıldığında anlamlı farklılık saptanmadı (p=0,363). Siklusların embryo transfer sonrası 12. gününde βHCG bakıldığı gün serum E2 seviyelerinde her iki grup arasında istatistiksel olarak anlamlı farklılık saptanmadı (p=0,777). Bu çalışmada östrojen eklenmesi luteal fazın erken ve geç döneminde serum E2 düzeylerinde farklılık oluşturmamıştır.

KAYNAKLAR

8- Letoon J, Parazzini F. A controlled study between the use of gamete intrafallopian transfer and in vitro fertilization and embryo transfer in the management of idiopathic and male infertility. *Fertil Steril* 1987; 48:3,605-609

18- Centers for Disease Control and Prevention, American Society for Reproductive Medicine, 2001 assisted reproductive technology success rates, US. Department of Health and Human Services, Public Health Service, Atlanta, GA. 2003

25- Klein NA, Illingworth PJ, Groome NP, McNeilly AS, Battaglia DE, Soules MR. Decreased inhibin-B secretion is associated with the monotropic FSH rise in older, ovulatory women: a study of serum and follicular fluid levels of dimeric inhibin A and Inhibin B in spontaneous menstrual cycles. J Clin Endocrinol Metab 1996; 81:2742

28- Welt-CK, McNicholl DJ, Taylor AE, Hall JE. Female reproductive aging is marked by decreased secretion of dimeric inhibin. J Clin Endocrinol Metab 1999; 84:105

29- Seifer DB, Scott RT, Jr, Bergh PA, Abrogast LK, Friedman CI, Mack CK, Danforth DR. Women with declining ovarian reserve may demonstrate a decrease in day 3 serum inhibin-B before a rise in day 3 follicle-stimulating hormone. Fertil Steril 1999; 72:63

31- Scott RT, Toner JP, Muasher SJ, Oehninger S, Robinson S, Rosenwaks Z. Follicle – stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertil Steril 1989; 51:651

42- El-Toukhy T, Khalaf Y, Hart R, Taylor A, Braude P. Young age does not protect against the adverse effects of reduced ovarian reserve—an eight year study. *Hum Reprod* 2002; 17:1519

50- Paulson RJ, Sauer MV, Francis MM, Macaso TM, Lobo RA. In vitro fertilization in unstimulated cycles; the University of Southern California experience. Fertil Steril 1992; 57:290

54- Paulson RJ, Sauer MV, Francis MM, Macaso TM, Lobo RA. In vitro fertilization in unstimulated cycles; the University of Southern California experience. Fertil Steril 1992; 57(2):290-3

57- Corfman RS, Milad MP, Bellavance TL, Ory SJ, Erickson LD, Ball GD. A novel ovarian stimulation protocol for use with the assisted reproductive Technologies. Fertil Steril 1993; 60; 864

Daya S. Gonadotropin releasing hormone agonist protocols for pituitary desensitization in in vitro and gamete intrafallopian transfer cycles. *Cochrane Database Syst Rev.* 2000; CD001299

Urbancsek J, Witthaus E. Midluteal buserelin is superior to early follicular phase buserelin in combined gonadotropin-releasing hormone analog and gonadotropin stimulation in in vitro fertilization. *Fertil Steril* 1996; 65:966-71

Daya S. Gonadotropin releasing hormone agonist protocols for pituitary desensitization in in vitro fertilization and gamete intrafallopian transfer cycles. *Cochrane Database Syst Rev.* 2000; CD001299

81- Matikainen T, Ding YQ, Vergara M, Huhtaniemi I, Couzinet B, Schaison G. Differing responses of plasma bioactive and immunoreactive follicle-stimulating hormone and luteinizing hormone to gonadotropin releasing hormone antagonist and agonist treatment in postmenopausal women. J Clin Endocrinol Metab 1992; 75:820-5

89- Gerig NE, Maecham RB, Ohi DA. Use of electroejaculation in the treatment of ejaculatory failure secondary to diabetes mellitus. Urology 1997; 49:239

95- Mansour RT, Aboulghar MA. Optimizing the embryo transfer technique. *Hum Reprod* 2002; 17:1149

96- Hutchison JS, Zeleznik AJ. The rhesus monkey corpus luteum is dependent on pituitary gonadotropin secretion throughout the luteal phase of the menstrual cycle. *Endocrinology* 1984; 115:1780-6

105- Jones, H. W. What has happened? Where are we? *Hum Reprod* 1996; 11(suppl.1):7-24

113- Daya S, Gunby J. Luteal phase support in assisted reproduction cycles. *Cochrane Database of Systematic Reviews* 2004; Issue 3

114- Saucedo LLE, Galache VP, Hernandez AS, Santos HR, Arenas ML, Patrizio P. Randomized trial of three different forms of progesterone supplementation (abstract P-175) *Fertil Steril* 2000; 74(S):205

116- Penzias AS. Luteal phase support. *Fertil Steril* 2002; 77:318-23

129- Kubik CJ. Luteal phase dysfunction following ovulation induction. Semin Reprod Endocrinol 1986; 4:293-9

131- Chenette PE, Sauer MV, Paulson RJ. Very high serum estradiol levels are not detrimental to clinical outcome of in vitro fertilization. Fertil Steril 1990; 54:858-863

132- Becker NG, Maclon NS, Eijkemans MJ, Ludwig M, Felberbaum RE, Diedrich K, Bustion S, Loumaye E, Fauser BC. Nonsupplemented luteal phase characteristics after the administration of recombinant human chorionic gonadotropin, recombinant luteinizing hormone, or gonadotropin releasing hormone (GnRH) agonist to induce final oocyte maturation in in vitro fertilization patients after ovarian stimulation with recombinant follicle- stimulating hormone and GnRH antagonist co treatment. J Clin Endocrinol Metab 2003; 88:4186-4192

133- Sharara FI, McClamrock HD. Ratio of oestradiol concentration on the day of human chorionic gonadotropin administrion to mind luteal oestradiol concentration is predictive of in vitro fertilization outcome. Hum Reprod 1999; 14(11):2777-82

134- Hung Yu Ng E, Shu Biı Yeung W, Yee Lan Lau E, Wai Ki So W ve Chung Ho P. A rapid decline in serum oestradiol concentrations around the mid- luteal phase had no adverse effect on outcome in 763 assisted reproduction cycles. Hum Reprod 2000; 115 (9):1903-1908

138- Smitz J, Bourgain C, Devroey P, Camus M, Van Waesberghe L and Van Steirteghem AC. A Prospective randomized study on estradiol valerate supplementation in addition to intravaginal micronized progesterone in buserelin and HMG induced superovulation. Human Reproduction 1993; 8:40-45

140- Görkemli H, Ak D, Akyürek C, Aktan M, Duman S. Comparison of pregnancy outcomes of progesterone or progesterone +estradiol for luteal phase support in ICSI-ET cycles. *Gynecol Obstet Invest* 2004; 58:140-144

146- Valbuena D, Martin C, De Paplo JL, Ramohi J, Pellicer A, Simon C. Increasing levels of oestradiol are deleterious to embryonic implantation because they directly affect the embryo. *Fertil Steril* 2001; 76:962-968
ÖZGEÇMİŞ

Adı Soyadı : Çiğdem AKÇABAY
Doğum Tarihi ve Yeri : 17.08.1978 / Elazığ
Medeni Durumu : Evli
Adres : Mahfesigmaz Mh. 75 Sok Selin Sitesi A Blok 5 / 10
Telefon : 0 (505) 616 71 89
Fax :
E. mail : cagcabay@hotmail.com
Mezun Olduğu Tıp Fakültesi : Çukurova Üniversitesi Tıp Fakültesi
Varsa Mezuniyet Derecesi :
Görev Yeri : Çukurova Üniversitesi Tıp Fakültesi Kadın Hastalıkları ve Doğum
Dernek Üyelikleri : Türk Jinekoloji ve Obstertik Derneği
Alınan Burslar :
Yabancı Dil(ler) : İngilizce