TİOPÜRİN S-METİLTRANSFERAZ GENOTİPLERİNİN BELİRLENMESİ

Ahmet GENÇ

DOKTORA TEZİ

DANIŞMANI
Doç. Dr. M. Akif ÇÜRÜK

ADANA–2009
TİOPÜRİN S-METİL TRANSFERAZ GENOTİPLERİNİN BELİRLENMESİ

Ahmet GENÇ

DOKTORA TEZİ

DANIŞMANI
Doç. Dr. M. Akif ÇÜRÜK

Bu tez, Çukurova Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından TF2007D9 nolu proje ile desteklenmiştir.

Tez No:........

ADANA–2009
KABUL VE ONAY FORMU

Çukurova Üniversitesi Sağlık Bilimleri Enstitüsü

Tarihi: 21/07/ 2009

İmza
Doç. Dr. M. Akif ÇÜRÜK
Çukurova Üniversitesi
Jüri Başkanı

İmza
Prof. Dr. Kıyımet AKSOY
Çukurova Üniversitesi
Jüri Üyesi

İmza
Prof. Dr. Lülüfer TAMER GÜMÜŞ
Mersin Üniversitesi
Jüri Üyesi

İmza
Prof. Dr. Soner UZUN
Çukurova Üniversitesi
Jüri Üyesi

İmza
Doç. Dr. Abdullah TULİ
Çukurova Üniversitesi
Jüri Üyesi

Yukarıdaki tez, Yönetim kurulunun …………………tarih ve ………………… sayılı kararı ile kabul edilmiştir.

Prof. Dr. Halil KASAP
Enstitü Müdürü
TEŞEKKÜR

Doktora eğitimin süresince bilgilerinden faydalandığım Biyokimya Anabilim Dalı öğretim üyelerinden Prof. Dr. Kıyımet AKSOY, Doç. Dr. Abdullah TULİ, Prof. Dr. Nurten DİKMEN, Yrd. Doç. Dr. Tamer İNAL’a ve araştırma görevlileri ile teknik elemanlarına teşekkür ederim.

Tez konumun belirlenmesi ve yürütülmesinde, teorik ve pratik deneyimlerinden faydalanılgım, yakın ilgi ve desteğini esirgemeyen tez danışmanım Doç. Dr. Mehmet Akif ÇÜRÜK’e ayrıca teşekkür ederim.

Tez çalışması için örneklerin temin edilmesinde Dermatoloji Anabilim Dalı öğretim üyesi Prof. Dr. Soner UZUN’a ve Uzm. Dr. Suhan GÜNAŞTI’ya teşekkür ederim. Pemfigus tedavisi gören hastanın ailesi ve akrabalarından kan alınmasını sağlayan Tibbi Biyoloji Anabilim Dalı’ndan Prof. Dr. Davut ALPTEKİN’e ayrıca teşekkür ederim.

Bu tez çalışması Ç.Ü. Rektörlüğü Bilimsel Araştırma Projeleri Birimi tarafından TF2007D9 no'lu proje ile desteklenmiştir.

Uzman Biyolog
Ahmet GENÇ
İÇİNDEKİLER

KABUL VE ONAY .. ii
TEŞEKKÜR.. iii
İÇİNDEKİLER .. iv
ŞEKİLLER DİZİNi .. vi
TABLOLAR DİZİNi .. vii
ŞİMGELEr ve KİSALTMALAR DİZİNi ... viii
ÖZET .. xi
ABSTRACT ... xii

1. GİRİŞ ... 1

2. GENEL BİLGİLER .. 3

2.1. 6-MERKAPTOPÜRİN S-METİLTİNSFERASE ENZİMİ 3

2.1.1. TPMT’nin Transkripsiyonu .. 7

2.1.2. TPMT Geni ... 7

2.1.3. Yaygın Mutant TPMT Allellerı .. 8

2.1.4. Amino Asit Dizi Değişimlerinin Yapısal Analizleri 10

2.1.5. Mutasyon Analizleri ... 15

2.1.5.1. TPMT*2 (A80P) Stimülasyonları ... 16

2.1.5.2. TPMT*3B (A154T) Stimülasyonları .. 19

2.1.5.3. TPMT*3C (Y240C) Stimülasyonları .. 21

2.1.5.4. TPMT*3A (A154T/Y240C) Stimülasyonları 22

2.1.6. Mutant TPMT Proteinlerinin Ubikuitin Yolu ile Yıkımı 25

2.1.7. Nadir Mutant TPMT Allellerin Protein Yapısı 26

2.2. TPMT GENOTİP-FENOTİP İLİŞKİSİ .. 27

2.3. 6-MERKAPTOPÜRİN METABOLİZMASI ... 28

2.3.1. 6-Merkaptopürin, 6-Tioguanin ve Azatiopürinin Etki Mekanizması ... 30

2.3.2. Toksisite ... 32

2.3.3. Tedavi ... 33

2.3.4. Dermatoloji’de Azatiopürinin Kullanımı .. 35

2.3.5. Farmakogenetik ... 35

3. GEREÇ VE YÖNTEM ... 36

3.1. GEREÇLER ... 36

3.1.1. Cihazlar .. 36

3.1.2. Kimyasal Malzemeler .. 36

3.2. ÖRNEK TOPLAMA ... 38

3.3. YÖNTEMLER ... 38

3.3.1. Tam Kandan DNA İzolasyonu ... 38

3.3.1.1 Çözeltiler ... 38

3.3.1.2 Yöntem ... 38
ŞEKİLLER DİZİÑI

Şekil 2.1 Klinikte kullanılan tiopürin ilaçların kimyasal yapısı ...3
Şekil 2.2 Tiopürin S-Metiltransferaz enzimi ile S-adenozil-L-homosisteinin kristal yapısı3
Şekil 2.3 İnsan TPMT enziminin yapısı ...5
Şekil 2.4 İnsan TPMT enziminin topolojisi ve sekonder yapısı ..6
Şekil 2.5 İnsan wild-tip TPMT (TPMT*1) geni ve yaygın mutant TPMT allellerini ..8
Şekil 2.6 Y180F, L49S, K122T ve Y240C mutasyonlarının etkileri ..13
Şekil 2.7 İnsan TPMT enziminin amino asit dizilimi ...14
Şekil 2.8 TPMT geninde bilinen varyantların gen üzerindeki dağılımı ...14
Şekil 2.9 A80P, A154T ve Y240C polimorfizmleri ...17
Şekil 2.10 Lokal tetramer yapıda TPMT polimorfizmelerinin etkileri ...18
Şekil 2.11 TPMT*2’nin lokal tuz köprü ağı etkilemesi ..20
Şekil 2.12 TPMT*3A polimorfizminin protein yapısı üzerine etkisi ..24
Şekil 2.13 TPMT ubikuitinasyonun potansiyel bölgeleri ..25
Şekil 2.14 TPMT polimorfizmeleri ..26
Şekil 2.15 TPMT genetik polimorfizmi ve tiopürin ilaçlarına yanıtın belirlenmesi ..27
Şekil 2.16 6-MP’nin aktif metabolitleri olan TGN’ye HGPRT tarafından dönüştürülmesi28
Şekil 2.17 6-merkaptopürin ve azatiopürinin metabolizması ...29
Şekil 2.18 Azatiopürinin/6-merkaptopürin detoksifikasyonundaki metabolik yol ...32
Şekil 3.1 Polimeraz zincir reaksiyonun şematik görünümü ...41
Şekil 3.2 TPMT*2 (G238C; A80P) mutasyonunu tanımlamada kullanılan primerler43
Şekil 3.3 TPMT*3B (G460A; Ala154Thr) mutasyonunu için amplifiye edilen bölge47
Şekil 3.4 TPMT*3C (A719G; Tyr240Cys) mutasyonu için amplifiye edilen bölge ...48
Şekil 3.5 Dizi analizinde kullanılan nükleotidlerden dNTP ve ddNTP ..49
Şekil 3.6 Dizi analizi ile tanımlama işlemi ..49
Şekil 3.7 Bir DNA dizi analizi sonucu ..50
Şekil 3.8 İnsan TPMT geninin nükleotid dizisi ..63
Şekil 4.1 TPMT*2, TPMT*3B ve TPMT*3C’nin ARMS görüntüsü ..64
Şekil 4.2 TPMT*2, TPMT*3B ve TPMT*3C’nin ARMS görüntüsü ..65
Şekil 4.3 TPMT*2, TPMT*3B ve TPMT*3C’nin ARMS görüntüsü ...65
Şekil 4.4 G460A mutasyonunun RFLP (MwoI) görüntüsü ..66
Şekil 4.5 A719G mutasyonunun RFLP (AccI) görüntüsü. ...67
Şekil 4.6 G460A mutasyonunun dizi analizi ile gösterilmesi. ..68
Şekil 4.7 A719G mutasyonunun dizi analizi ile gösterilmesi. ..68
Şekil 4.8 TPMT*3A allelini taşıyan probandın aile soyağıcı. ...69
Şekil 4.9 Bir hastada TPMT*2 allelinin gösterilmesi..69
TABLOLAR DİZİNİ

Tablo 2.1 TPMT geninin ekson ve intron uzunluğu ..7
Tablo 2.2 Değişik popülasyonlarda TPMT allele sikliği ..9
Tablo 2.3 Tiopürin S-Metiltransferaz Allelleri ..11
Tablo 3.1 TPMT*2 genotipinin belirlenmesinde kullanılan primerler ...43
Tablo 3.2 ARMS yönteminde kullanılan PCR programı ..44
Tablo 3.3 Multipleks ARMS’ta kullanılan primerler ..46
Tablo 3.4 RFLP yönteminde kullanılan primerler ve restriksiyon enzimleri ...47
Tablo 3.5 TPMT mutasyonlarının RFLP ile tiplendirilmesi ..48
SİMGELE ve KISALTMALAR DİZİNİ

<table>
<thead>
<tr>
<th>Sımbol</th>
<th>İsim</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPMT</td>
<td>Tiopürin S-metil Transferaz</td>
</tr>
<tr>
<td>MT</td>
<td>Metiltransferaz</td>
</tr>
<tr>
<td>AZA</td>
<td>Azatiopürin</td>
</tr>
<tr>
<td>MP</td>
<td>Merkaptopürin</td>
</tr>
<tr>
<td>MMP</td>
<td>Metil Merkaptopürin</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenozilmetiyonin</td>
</tr>
<tr>
<td>SAH</td>
<td>S-adenozilhomosistein</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
<tr>
<td>TGN</td>
<td>Tioguanin Nükleotidleri</td>
</tr>
<tr>
<td>adoMet</td>
<td>S-adenozil-L-metiyonin</td>
</tr>
<tr>
<td>AdoHcy</td>
<td>S-adenozil-L-homosistein</td>
</tr>
<tr>
<td>GMP</td>
<td>Guanozin monofosfat</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanozin difosfat</td>
</tr>
<tr>
<td>IMP</td>
<td>İnozin monofosfat</td>
</tr>
<tr>
<td>XO</td>
<td>Ksantin oksidaz</td>
</tr>
<tr>
<td>HGPRT</td>
<td>Hipoksantin Guanin Fosforiboziltransferaz</td>
</tr>
<tr>
<td>IMPDH</td>
<td>İnozin Monofosfat Dehidrogenaz</td>
</tr>
<tr>
<td>GMPS</td>
<td>Guanin monofosfat sentaz</td>
</tr>
<tr>
<td>ALL</td>
<td>Akut Lenfoblastik Lösemi</td>
</tr>
<tr>
<td>RA</td>
<td>Romatoid artrit</td>
</tr>
<tr>
<td>IV</td>
<td>İntra Venöz</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes simpleks virüsü</td>
</tr>
<tr>
<td>SNP</td>
<td>Tek Nükleotid Polimorfizmi</td>
</tr>
<tr>
<td>B3P</td>
<td>2-[3-(2-hidroksi-1,1-dihidroksimetil-etilamino)-propilamino]-2-hidroksimetil-propan-1,3-diol</td>
</tr>
<tr>
<td>A°</td>
<td>Angstron</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>OD</td>
<td>Optik Dansitometre</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>CBC</td>
<td>Cell Blood Count (Tam Kan Sayımı)</td>
</tr>
<tr>
<td>RBC</td>
<td>Red Blood Cell (Kırmızı Kan Hücresi)</td>
</tr>
<tr>
<td>ORF</td>
<td>Open Reading Frame</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>bç</td>
<td>Baz çifti</td>
</tr>
<tr>
<td>kb</td>
<td>Kilo baz</td>
</tr>
<tr>
<td>IVS</td>
<td>Intervening Sequences (İtron dizileri)</td>
</tr>
<tr>
<td>PCR</td>
<td>Polimeraz Zincir Reaksiyonu (Polymerase Chain Reaction)</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoksi nükleotid trifosfat</td>
</tr>
<tr>
<td>ARMS</td>
<td>Amplification Refractory Mutation System</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
</tbody>
</table>
ÖZET

Tiopürin S-Metil Transferaz Genotiplerinin Belirlenmesi

Tiopürin S-Metil Transferaz (TPMT) aromatik ve heterosiklik sülfidril bileşiklerin S-metilasyonunu katalizleyen sitoplazmik bir enzimdir. TPMT enzim aktivitesi bir erişkinden diğerine önemli değişiklikler göstermektedir. Bu farklılık genetik olarak belirlenmektedir. Toplumun yaklaşık %89’u yüksek TPMT aktivitesine sahiptir. Geri kalan yaklaşık %11’si veya tümden TPMT eksikliği vardır. TPMT eksikliği olan bireyler 6-merkaptopürin veya azatiopürin gibi tiopürin grubu ilaçlara tollerans gösterememekte olup hematopoeitik toksisite veya bazen ölüme neden olmaktadır. Farklı popülasyonlarda yapılan birçok çalışmada TPMT enzim aktivitesi ve genotipi arasında >%98 ilişki olduğu gösterilmiştir. TPMT geninde 3 nokta mutasyonu düşük TPMT aktivitesinden sorumlu dur. Wild-tip allele TPMT*1 olarak adlandırılmakta ve yaygın mutant alleleler TPMT*2 (G238C), TPMT*3A (G460A ve A719G), TPMT*3B (G460A) ve TPMT*3C’den (A719G) oluşmaktadır. Bu çalışmada, beyaz kan hücrelerinden DNA izole edildi. TPMT*2, TPMT*3B ve TPMT*3C nokta mutasyonları PCR’a dayalı ARMS ve RFLP ile analiz edildi. DNA dizi analizi G460A ve A719G mutasyonlarını doğrulamak için kullanıldı. Toplam 64 Pemfigus hastasına analiz edildi ve iki farklı mutant TPMT alleli tanımlandı. Hastalardan biri TPMT*3A için heterozigot olup, tüm aile bireyleri TPMT*3A taraması yapıldı. Proband annesinden mutant alleli almış ve iki kızına kalmış yoluya aktarmıştır. Diğer hasta TPMT*2 için heterozigot olarak tanımlandı.

Anahtar Sözcükler: Tiopürin S-Metiltransferaz, TPMT*2, TPMT*3A, Multileks PCR-ARMS ve DNA Dizi Analizi.
ABSTRACT

Identification of Thiopurine S-Methyltransferase Genotypes

Thiopurine S-Methyltransferase is a cytoplasmic enzyme that catalyzes the S-methylation of aromatic and heterocyclic sulphydryl compounds. TPMT enzyme activity varies considerably from one individual to another and this variation is genetically determined. About 89% of people have relatively high TPMT activity. The remaining ~11% have partial or complete TPMT deficiency. TPMT deficient individuals can not tolerate thiopurine drugs such as 6-mercaptopurine or azathioprine, resulting in haematopoietic toxicity or sometimes death. Several studies among different populations have demonstrated a >98% concordance between TPMT enzyme activity and genotype. Three point mutations in the TPMT gene are responsible for low TPMT activity. The wild-type allele is named as TPMT*1 and the common mutant alleles include TPMT*2 (G238C), TPMT*3A (G460A and A719G), TPMT*3B (G460A) and TPMT*3C (A719G). In this study, DNA was isolated from white blood cell. TPMT*2, TPMT*3B and TPMT*3C point mutations were analyzed by PCR based ARMS and RFLP. DNA sequencing was used for verification of G460A and A719G mutations. A total of 64 Pemfigus patients were analyzed and two different mutant TPMT alleles was identified. One of the patients was heterozygote for TPMT*3A and all the family members were screened for TPMT3A. The proband had the mutant allele from her mother and inherited it to her two daughters. The other patient was identified as heterozgotes for TPMT*2.

Key words: Thiopurine S-methyltransferase, TPMT*2, TPMT*3A, Multiplex PCR-ARMS and DNA Sequencing
1. GİRİŞ

Azatiopürin, merkaptopürin ve tioguanin gibi ilaçlar akut lenfoblastik lösemi, romatolojik ve dermatolojik hastalıklar, inflamatuar kemik hastalıklarının tedavisi ile solid organ transplantasyonunda yaygın olarak kullanılmaktadır2,3,6,8,10-14,20,21,23-26. Tiopürin grubu ilaçlar inaktiftir9,27. Tiopürinlerin immünsupresif ve sitotoksik etkileri için tioguanin nükleotidlerine (TGN) metabolize edilmesi gerekmektedir2,4,5,8,14,27. Hipoksantin guanin fosforibozil transferaz (HGPRT) ile başlayıp bir seri enzim prodrug modifikasyonundan sonra TGN’leri oluşmaktadır4,8,13,14,17,18,23,27. Bu ilaçların tam etki mekanizması bilinmemekle birlikte, TGN’lerin etki mekanizması; DNA-RNA sentezi ve kromozomal replikasyonu ile birleşmesi ve interferansı, T ve B hücre proliferasyonunu inhibe etmesi ve natural-killer hücre profilerasyonunu inhibe etmeleri ile interferansını içermektedir2,13,27. Tiopürinlerin inaktivasyonu TPMT’nin metilasyonu ile olmaktadır3. TPMT eksikliği olan hastalarda aktif TGN’lerin birikmesi sonucunda, bunlar ağırlık ve yaşamı tehdit eden hematolojik toksisiteye yol açabilmektedir2,5,9,11,12,18,20.

Tiopürin metabolizmasında varyasyonların genetik temeli TPMT geninde kodlanan dizideki polimorfizmlerdir. TPMT’nin 22 mutant alleli düşük TPMT aktivitesi ile karakterizedir. Bunlardan dört varyant (TPMT*2, TPMT*3A, TPMT*3B ve TPMT*3C) düşük TPMT aktivitesinin %80-95’inden sorumludur. Düşük TPMT aktivitesine neden olan mutasyonlarda da etnik farklılıklar tespit edilmiştir. Varyant enzimin yanlış katlrandığı ve ardından agregom formu oluşturduğu gösterilmiştir. Bu üç allele mutant proteinlerin proteoliz oranını artırması nedeniyle düşük enzim aktivitesine neden olmaktadır.

Üç mutant allele (TPMT*2, TPMT*3A ve TPMT*3C) ile TPMT eksikliğinin büyük bir kısmı açıklanmaktadır. Üç belirli mutasyonu saptamak için hızlı ve etkili olan allele spesifik PCR veya PCR-RFLP yöntemleri kullanılarak, bütün mutant allellerin >%90 tanımlamak mümkündür.
2. GENEL BİLGİLER

2.1 TİOPÜRİN S-METİL TRANSFERAZ ENZİMİ

Tiopürin S-metiltransferaz [TPMT; (EC 2.1.1.67)] azatiopürin, 6-merkaptopürin ve tioguaninin metabolizmasında rol oynamaktadır2,4,8,11-18,20-22,26,32-34. Enzim bir metil donörü olarak S-adenozilmetionin (SAM) kullanarak sülfür atomlarının metilasyonunu katalizlemektedir2-5,13-15. TPMT, tiopürin ilaçlarını (Şekil 2.1) inaktive etmek için bunların S-metilasyonunu katalizleyen (Şekil 2.2) ve toksik olmayan metabolitler oluşturan sitoplazmik bir enzimdir4,6,8,10,12-14,19,20,22,27. TPMT reaksiyonu metil donörü S-adenozil-L-metionin (adoMet) ile metil akseptörü olan iki substratı almakta ve S-adenozil-L-homosistein (AdoHcy) ile metillenmiş ürün oluşturmaktadır36. Bu enzimin katalizlediği reaksiyon aşağıda gösterilmiştir37.

$$\text{S-adenozil-L-metionin} + \text{Tiopürin} \rightleftharpoons \text{S-adenozil-L-homosistein} + \text{Tiopürin S-methylether}$$

Şekil 2.1 Klinikte kullanılan tiopürin ilaçların kimyasal yapısı38.

Şekil 2.2 TPMT ile S-adenozil-L-homosisteinin kristal yapısı39.
İnsan TPMT yapısı (1) doğal olarak oluşan amino asit dizilimindeki değişimler yapının her tarafında tespit edilmiştir. (2) Değişen amino asitler intra-moleküler yapıda yer alan van der Waals bağlarının oluşumunu etkileyerek, fonksiyonunda birçok etkisi olmaktadır.\(^{34}\)

TPMT klasik SMT-I metiltransferaz (MTaz) katlanması ile tek domain proteinidir. Domain, her bir ucunda 3 heliks [bir uçta \(\alpha B\), \(\alpha C\), \(\alpha D\), ve diğer uçta \(\alpha E\), \(\alpha F\), \(\alpha G\); Şekil 2.3 (A) açık mavi renk] ile bağlı 9 iplikli \(\beta\)-tabaka [Şekil 2.3 (A) daki yeşil] içermektedir. İki ek heliks [Şekil 2.3 (A) da sarı] MTaz katlanmasının arasına yerleştirilmiştir: \(\beta 8\) ve \(\beta 9\) hairpin ipliği arasındaki N-terminal heliks \(\alpha A\) ve heliks \(\alpha H\)'dır. Diğer MTazlarla karşılaştırıldığında, AdoHcy nükleotid bağlayıcı bölgenin belirgin özelliği \(\beta 1-\beta 2-\beta 5\) paralel ipliklerin karboksil ucuna bağlanmaktadır. N-terminal bölgesi, asidik cepte AdoHcy’nin [Şekil 2.3 (B)] bağlanmasını zorlamaya yardımcı etmektedir. Heliks \(\alpha A\) ve çevreleyici ilmek AdoHcy bağlayıcı alana [Şekil 2.3(C)] bir aromatik kapak formasyonunu dört rezidü (L26, W29, W33 ve F40) ile sağlanmaktadır.\(^{34}\)
Şekil 2.3. İnsan TPMT enziminin yapısı (A) Şerit modelde TPMT’nin iki görüntüsü. İplikler yeşil, helikler mavi ile renklendirilmiştir. Ek olarak N-terminal heliks (αA) ve β8 ile β9 ipliği arasındaki α(H) heliks insersiyonu sarı ile gösterilmiştir. Doğal olarak oluşmuş mutasyonlar kırmızı ile gösterilmiştir. AdoHcy’nin bağlı konvansiyonel renklerle (karbon atomları gri, nitrojen mavi, oksijen kırmızı ve sülfür sarı) ball ve stick modeli ile gösterilmiştir. (B) Kofaktör bağlama cebi ve potansiyel substrat difüzyon kanalı gösteren yüzey modelde TPMT’nin dört görüntüsü. Pozitif yük yüzeyi mavi, negatif yük yüzeyi kırmızı ve nötral yük yüzey beyaz ile gösterilmiştir. AdoHcy bağlı stick modelde gösterilmiştir. (C) TPMT-AdoHcy etkileşiminin yakından görüntüsü. 34.
β-tabaka, simetrik olarak merkezi iplik olan β1 (Şekil 2.4) ile bağlı olan, her birinin ucunda bir çift antiparalel β-hairpin ile 5 paralel iplikten (8↓9↑7↓6↓1↓2↓5↓4↑3↓) oluşmaktadır. Bu simetri ilk olarak DNA-adenozil ve AdoMet-adenozil bağlayıcı bölgelerin yapısı olarak karşılaştırılmasıyla DNA MTaz’larında fark edilmiştir.34

![Şekil 2.4. İnsan TPMT’nin topolojisi ve sekonder yapısı. İnsan TPMT’nin topolojisi. Helikler silindir şeklinde (harflı) ve iplikler geniş ok şeklinde (rakamlı) gösterilmiştir. Rezidü numaraları sekonder yapısı elementlerinin ucunu göstermektedir. Amino asit diziliminde dış olarak oluşan değişimler siyah dairede beyaz yazı ile gösterilmiştir. Helikler αB, αC ve αD β-tabakanın bir tarafında iken, heliks αE, αF ve αG ise diğer tarafta yer almaktadır.34](image)

Metil akseptörü olarak 6-merkaptopürin ve diğer tiopürinler çok iyi karakterize edilmesine rağmen, bu enzim için bugüne kadar doğal bir substrat tanımlanamamıştır.5,18,27,34,36 Pürin analoğları olarak dizayn edilen bu ilaçlar, normal nükleotid homeostazda olduğu gibi aynı metabolik yol ile metabolize edilerek normal DNA sentezini bozmak için hedeflenmiştir. Bu ilaçlar, hücrelerde sellüler DNA yapısına giren ve programlanmış hücre ölümünü tetikleyen 6-TGN’lere dönüştürmektedir. TPMT ile katalizlenen S-metilasyon, tiopürinlerin biyoyararlanmasını azaltmıştır. Bu nedenle TPMT, intrasellüler sitotoksik 6-TGN’lere dönüşümü önlemedetirdar.3,5,26,29,34
2.1.1 TPMT’nin Transkripsiyonu

TPMT, tiopürin ilaçların S-metilasyonunu katalizleyerek inaktif ve toksik olmayan metabolitler oluşturutan sitoplazmik bir enzimdir. Bu enzim için bugüne kadar doğal bir substrat tanımlanmamasına rağmen, TPMT transkriptleri akciğer, karaciğer, iskelet kasları, böbrek, lenfositler, platelller kırmızı ve beyaz kan hücrelerini içeren değişik doku tiplerinde eksprese edilmektedir. TPMT aktivitesi tüm dokularla korelasyon göstermektedir, kolay elde edilebilmesinden dolayı kırmızı kan hücrelerinde ölçülmektedir.

2.1.2 TPMT Geni

Azatiopürin metabolizmasında, TPMT enzim aktivitesinde bireyler arasında genetik varyasyon olduğu açıktır. TPMT eksikliği otozomal kodominant kalıtımdır. TPMT geni 6p22.3 kromozomu üzerinde yerleşmiş olup, 9 intron ve 10 ekson (Tablo 2.1) tarafından (Şekil 2.5) kodlanmaktadır. Bu genin kodladığı protein, 28 kDa moleküler ağırlığında ve 245 amino asitten oluşmuştur.

<table>
<thead>
<tr>
<th>Intron</th>
<th>Ekson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzunluğu (bç)</td>
<td>Uzunluğu (bç)</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>1072</td>
</tr>
<tr>
<td>2</td>
<td>4094</td>
</tr>
<tr>
<td>3</td>
<td>3878</td>
</tr>
<tr>
<td>4</td>
<td>627</td>
</tr>
<tr>
<td>5</td>
<td>5073</td>
</tr>
<tr>
<td>6</td>
<td>1626</td>
</tr>
<tr>
<td>7</td>
<td>1352</td>
</tr>
<tr>
<td>8</td>
<td>110</td>
</tr>
</tbody>
</table>

Tablo 2.1. TPMT geninin ekson ve intron uzunluğu (bç: baz çifti)
Şekil 2.5. İnsan wild-tip TPMT (TPMT*1) geni ve yaygın mutant TPMT alleleri. Siyah kutular open reading frame (ORF) dizisinin kodladığı eksonlar, beyaz kutular ise translate edilmeyen bölge dizilimini kodlayan eksonları veya eksonların bir kısmını göstermektedir. Ekson uzunluğu proteinin gen dizimi ile orantılı iken, intron uzunlukları ise şekilde gösterilenden farklıdır.

2.1.3 Yaygın Mutant TPMT Alleleri

Birçok çalışmada tiopürin ilaçların neden olduğu hematopoeitik toksisitesinin büyük faktörünün TPMT geninde inaktif enzime neden olan tek nükleotid polimorfizmelerinin (SNP) olduğu tanımlanmıştır. TPMT polimorfizmeleri terapötik etkinlik ve merkaptopüürinlerin toksisitesi ile ilişkilendirilmiştir. Bugüne kadar çalışılmış bütün büyük popülasyonlarda, TPMT aktivitesinin yüksek derecede değişken ve polimorfik olduğu (Tablo 2.2) gösterilmiştir. TPMT’nin trimodal kalıtılm gösteren üç temel enzim fenotipi (düşük, orta ve yüksek) vardır. Popülasyonun %89’u wild-tip olarak adlandırılan normal/yüksek TPMT aktivitesine sahiptir. Kalan %11 ise TPMT mutant alleli için heterozigotluğu belirten orta enzim aktivitesine, her 300 kişiden 1 kişi TPMT için çift heterozigot veya homozigot olan ve TPMT aktivitesi düşük veya enzim aktivitesi hiç yoktur.
Tablo 2.2. Değişik popülasyonlarda TPMT alel sıklığı.

<table>
<thead>
<tr>
<th>Popülasyon</th>
<th>Sayı</th>
<th>*2</th>
<th>*3A</th>
<th>3B</th>
<th>*3C</th>
<th>Kaynaklar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amerikan</td>
<td>564</td>
<td>0.2</td>
<td>4.5</td>
<td>TE</td>
<td>0.3</td>
<td>44</td>
</tr>
<tr>
<td>İngiliz</td>
<td>398</td>
<td>0.5</td>
<td>4.5</td>
<td>TE</td>
<td>0.3</td>
<td>44,45,46</td>
</tr>
<tr>
<td>Fransız</td>
<td>938</td>
<td>0.7</td>
<td>3.0</td>
<td>0</td>
<td>0.4</td>
<td>46</td>
</tr>
<tr>
<td>Alman</td>
<td>2428</td>
<td>0.5</td>
<td>8.6</td>
<td>TE</td>
<td>0.8</td>
<td>44,45,46</td>
</tr>
<tr>
<td>Polonya</td>
<td>716</td>
<td>0.4</td>
<td>2.7</td>
<td>0</td>
<td>0.1</td>
<td>46</td>
</tr>
<tr>
<td>İsveç</td>
<td>1600</td>
<td>0.06</td>
<td>3.75</td>
<td>0.13</td>
<td>0.44</td>
<td>45,46</td>
</tr>
<tr>
<td>Danimarka</td>
<td>400</td>
<td>TE</td>
<td>3.3</td>
<td>0</td>
<td>0.3</td>
<td>45</td>
</tr>
<tr>
<td>Norveç</td>
<td>132</td>
<td>0</td>
<td>3.4</td>
<td>0</td>
<td>0.3</td>
<td>46</td>
</tr>
<tr>
<td>Norveç Sami</td>
<td>388</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>46</td>
</tr>
<tr>
<td>Bulgar</td>
<td>626</td>
<td>0.16</td>
<td>2.24</td>
<td>0</td>
<td>0.16</td>
<td>46</td>
</tr>
<tr>
<td>İtalyan</td>
<td>206</td>
<td>0.4</td>
<td>3.9</td>
<td>TE</td>
<td>0.9</td>
<td>44</td>
</tr>
<tr>
<td>Afrikan-Amerikan</td>
<td>248</td>
<td>0.4</td>
<td>0</td>
<td>TE</td>
<td>2.4</td>
<td>44,46,47</td>
</tr>
<tr>
<td>Arjantin</td>
<td>294</td>
<td>0.7</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>Gana</td>
<td>434</td>
<td>0</td>
<td>0</td>
<td>TE</td>
<td>7.6</td>
<td>45,46</td>
</tr>
<tr>
<td>Kenya</td>
<td>202</td>
<td>0</td>
<td>0</td>
<td>TE</td>
<td>5.4</td>
<td>45,46</td>
</tr>
<tr>
<td>Çin</td>
<td>384</td>
<td>0</td>
<td>0</td>
<td>TE</td>
<td>2.3</td>
<td>45,46</td>
</tr>
<tr>
<td>Japon</td>
<td>1044</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.6</td>
<td>46</td>
</tr>
<tr>
<td>Tayvan</td>
<td>498</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>45</td>
</tr>
<tr>
<td>Tayland</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.75</td>
<td>46</td>
</tr>
<tr>
<td>Güneybatı Asya</td>
<td>198</td>
<td>0</td>
<td>1</td>
<td>TE</td>
<td>0</td>
<td>45,46</td>
</tr>
<tr>
<td>Güneydoğu Asya</td>
<td>1098</td>
<td>0</td>
<td>0</td>
<td>TE</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>Brezilya</td>
<td>408</td>
<td>2.2</td>
<td>1.5</td>
<td>0.2</td>
<td>1</td>
<td>44,46</td>
</tr>
<tr>
<td>Kolombiya</td>
<td>280</td>
<td>0.4</td>
<td>3.6</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>Mısır</td>
<td>400</td>
<td>0</td>
<td>0.003</td>
<td>0</td>
<td>0.013</td>
<td>46</td>
</tr>
<tr>
<td>Türk</td>
<td>296</td>
<td>2.0</td>
<td>1.0</td>
<td>TE</td>
<td>1.4</td>
<td>44</td>
</tr>
<tr>
<td>Malezya</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>TE</td>
<td>1.3</td>
<td>47</td>
</tr>
<tr>
<td>Hindistan</td>
<td>200</td>
<td>0</td>
<td>0.5</td>
<td>TE</td>
<td>0.8</td>
<td>47</td>
</tr>
<tr>
<td>Yeni Zelanda</td>
<td>100</td>
<td>0</td>
<td>5.0</td>
<td>TE</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>Endonezya</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>45</td>
</tr>
<tr>
<td>Filipin</td>
<td>200</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>45</td>
</tr>
<tr>
<td>Görländ</td>
<td>284</td>
<td>TE</td>
<td>8.1</td>
<td>0</td>
<td>0</td>
<td>45</td>
</tr>
</tbody>
</table>

TE: Tespit Edilmedi
TPMT*1 olarak adlandırılan wild-tip dışında 26 farklı mutant TPMT alleleli literatürlerde tanımlanmıştır. Bütün bu allelelerde TPMT aktivitesi düşük ve/veya homozigotlarda enzim aktivitesi tespit edilmiştir\(^3,20,21,27,34,42\). Beyaz ırkta, Afrika-Amerikalı ve Asya popülasyonlarında mutant allellerin yaklaşık %90’ı üç mutant allele (TPMT*2, TPMT*3A ve TPMT*3C) oluştururken, diğer mutant alleler sadece birkaç vakada tespit edilmiştir\(^2,4,6,13,15,20,22,25,27,33,35,43\). İklor arasında allele sıkılığında farklılık tespit edilmiştir\(^3,6,8,15,16,27,32,33\). Beyaz ırkta enzim aktivitesini en az en yaygın polymorfizmin TPMT*3A olduğu belirlenmiştir\(^4,11,14,16,23,32,35,40\). TPMT*3A, beyaz ırkta %5 olarak tespit edilmiştir\(^1,4,27,34\). TPMT*3C ise en yaygın olarak Afrika ve Asya popülasyonlarında bulunmakta ve düşük enzim aktivitesine neden olmaktadır\(^16,27,40\). Asya ülkelerinde enzim eksikliğinin çok az olduğu (%0.04-0.006) tespit edilmiştir\(^2,17\).

TPMT*2, TPMT*3A, TPMT*3B ve TPMT*3C genotipinin tespit edilmesi durumunda TPMT aktivitesi tahmin edilebilir; tüm dört alleleli heterozigot formu hastada orta aktiviteye, bu allelelerin homozigot formunda ise hastada TPMT aktivitesi gözlenmez. Ek olarak, çift heterozigotlarda da (TPMT*2/3A, TPMT*2/3C, TPMT*3A/3C) hiç TPMT aktivitesi gözlemlenmemektedir\(^20,23,30\). Yapılan çalışmalarda TPMT eksikliği olan hastalarda tiopürinlerin konvansiyonel dozajı ile tedavi edilirse, ağır hematopoeitik toksisite gelişme riskinin çok yüksek olduğu bulunmuştur. TPMT lakusu heterozigot olan hastalarda da orta düzeyde toksisite riskinin olduğu gösterilmiştir\(^1,5,9,11,12,15,16,18,20,22,27,29,30,33,34\). Buna zıt olarak enzim aktivitesi çok yüksek olan hastalarda, bu ilaçların standart dozu ile tedavilerinde yanıt alınmayabilir\(^2,12,23,28,34\).

2.1.4 Amino Asit Dizi Değişimlerinin Yapısal Analizleri

Proteinde amino asit dizisindeki değişimler, her bir allelede proteinin stabilitesini ve katalitik aktivitesini değiştirirmektedir. Bu amino asit değişimlerinin bazıları protein yapısını değiştirebilir. TPMT’nin 26 varyant allele vardır ve bunların 18’si amino asit dizisinde değişiklik olmuştur. Bir çalışmada 14 TPMT mutasyonunun (wild-tip dahil) aktivite, protein düzeyi ve stabilitesindeki fonksiyonel etkilerini (Tablo 2.3) incelenmiştir\(^34,42\).
Tablo 2.3. Tiopürin S-Metiltransferaz Alleleri

<table>
<thead>
<tr>
<th>Alleli</th>
<th>a.a değişimi</th>
<th>Aktivite (WT)</th>
<th>İmmünoreaktif Protein (WT)</th>
<th>Yapısal Yeri</th>
<th>Muhtemel fonksiyonu ve yorum</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1</td>
<td>Wild-tip</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>*7</td>
<td>H227Q</td>
<td>98</td>
<td>87</td>
<td>αH</td>
<td>(b)</td>
</tr>
<tr>
<td>*9</td>
<td>K119T</td>
<td>92</td>
<td>92</td>
<td>β4</td>
<td>(b)</td>
</tr>
<tr>
<td>19</td>
<td>K122T</td>
<td>82</td>
<td>91</td>
<td>β8</td>
<td>(b) (multiple polar etkileşimde rol oynamaktak)</td>
</tr>
<tr>
<td>*8</td>
<td>R215H</td>
<td>82</td>
<td>91</td>
<td>β4</td>
<td>(b) (K119T’ye benzer)</td>
</tr>
<tr>
<td>*16</td>
<td>R163H</td>
<td></td>
<td></td>
<td>αF</td>
<td></td>
</tr>
<tr>
<td>*10</td>
<td>G144R</td>
<td>69</td>
<td>80</td>
<td>αE ve βα6 arasındaki etkileşim</td>
<td>(b)</td>
</tr>
<tr>
<td>*13</td>
<td>E28V</td>
<td>61</td>
<td>69</td>
<td>αA</td>
<td>(b) (indirekt olarak kofaktör bağlanması ile ilgili olabilir)</td>
</tr>
<tr>
<td>*12</td>
<td>S125L</td>
<td>41</td>
<td>44</td>
<td>β4 ve β5 arasındaki etkileşim</td>
<td>(b)</td>
</tr>
<tr>
<td>*17</td>
<td>Q42E</td>
<td></td>
<td></td>
<td>αA ve αB arasındaki etkileşim</td>
<td>(Kofaktör ile su yüzeyde etkileşim)</td>
</tr>
<tr>
<td>*11</td>
<td>C132Y</td>
<td>36</td>
<td>61</td>
<td>β5</td>
<td>(a) (c)</td>
</tr>
<tr>
<td>*6</td>
<td>Y180F</td>
<td>36</td>
<td>59</td>
<td>β7</td>
<td>(a) (b)</td>
</tr>
<tr>
<td>*2</td>
<td>A80P</td>
<td>26</td>
<td>27</td>
<td>αC</td>
<td>(a) (b)</td>
</tr>
<tr>
<td>*3C</td>
<td>Y240C</td>
<td>17</td>
<td>25</td>
<td>β9</td>
<td>(B) (direnk olarak kofaktör bağlayıcı bölgeyi etkilemek, düşük aktivite olduğu tahmin edilebilir)</td>
</tr>
<tr>
<td>*18</td>
<td>G71R</td>
<td></td>
<td></td>
<td>β1’den sonraki etkileşim</td>
<td>(B) (direnk olarak kofaktör bağlayıcı bölgeyi etkilemek, düşük aktivite olduğu tahmin edilebilir)</td>
</tr>
<tr>
<td>*5</td>
<td>L49S</td>
<td>2.4</td>
<td>71</td>
<td>αB</td>
<td>(a)</td>
</tr>
<tr>
<td>*3B</td>
<td>A154T</td>
<td>1.7</td>
<td>1.0</td>
<td>β6’dan sonraki etkileşim</td>
<td>(a) (c)</td>
</tr>
<tr>
<td>*3A</td>
<td>A154T+Y240C</td>
<td>1.6</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*3D</td>
<td>E98STOP+A154T+Y240C</td>
<td>1.6</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*14</td>
<td>M1V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*15</td>
<td>25 rezidü (140.-165. rezidüler) delesyonu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Hidrofobik çekirdek (b) intramoleküler polar etkileşim (c) kofaktör bağlayan ve/veya potansiyel olarak substrat bağlayan
Çoğu mutant alloenzimler degradasyonun oranını hızlandırmasından sorumludur. En azından bir kısmı enzim düzeyini azaltmakta ve bununla doğru orantılı olarak enzim aktivitesini azaltmaktadır. TPMT düzeyi ve enzim aktivitesinin liner korelasyonunda bir istisna TPMT*5 (L49S) amino asit değişimidir. Bu mutant protein düzeyi %30 azalma ama enzim aktivitesi ise sadece %2 oranında azalmaktadır. L49, molekülün merkezinde (Şekil 2.6) dipte gömülüdür ve kofaktör bağlama ile aktif bölge formasyonu için önemli olan merkezi üç iplik [β1 (F67), β6 (W150) ve β7 (L181)] ve αB (L53 ve F56), αC (W78 ve F79) heliklerinden oluşan alifatik-aromatik rezidülerine karşı paketlenmiştir. Daha küçük olan serin amino asitin yapıya girmesiyle polar atom denge bozularak internal boşluk azalmakta ve enzim aktivitesinde orantısız azalmaya neden olmaktadır34.

Nokta mutasyonlarının pozisyonları toplam 245 rezidünün bütün bölge/yapısı (Şekil 2.7) boyunca [ilk rezidüden (M1V), karboksil uca yakın (Y240C) rezidüye kadar] dağılmıştır34. Benzer şekilde gen üzerindeki dağılımı Şekil 2.8 üzerinde gösterilmiştir19.

TPMT varyantları etkilediği yapıya göre üç farklı kategoriye ayrılmaktadır:
A. van der Waals bağlantısı ile paketlenen yapıyi etkileyenler (L49S, A80P, C132Y, A154T, Y180F ve Y240C) [Şekil 2.6 (A-D)]
B. Intramoleküler polar etkileşimi kapsayanlar (E28V, K119T, K122T, S125L, G144R, R163H, R215H ve H227Q)
C. Kofaktör bağlanmasını direkt veya indirekt olarak etkileyenler (G71R ve Q42E)

Bazı mutasyonlar bir kategoriden daha fazla kategoriye girebilir. Örneğin, A154 Cβ atomu P68, L69 (AdoHcy ile etkileşmekte) ve D151 (Y166 ve Y180 ile hidrojen bağlı ile etkileşmekte) van der Waals bağlı ile [Şekil 2.6 (A)] etkileşmekte. Kofaktör bağlayıcısı bölge aktif bölgesi çok yakın olmasından dolayı, A154 amino asiti treonin ile değişimi (A154T; TPMT*3B) sonucunda, kofaktör bağlanma affinitesini ve enzim aktivitesini değiştirir. Şekil 2.6’da bu etkileşimlerin detayları gösterilmiştir34.
Şekil 2.6. Y180F, L49S, K122T ve Y240C mutasyonların etkileri. (A) A154 P68, L69 (AdoHcy ile etkileşekte) ve D151 (Y166 ve Y180 ile hidrojen bağlı oluşturur) ile van der Waals ile bağlanmaktadır. A154 treonin amino asidi ile değişimde (A154T) protein düzeyi ve aktivitesinde (WT’ın sadece %1-2) çok ağır değişime neden olmaktadır, treonin yan zincirinin büyük olması ve onun polaritesi kofaktör bağlayıcı bölgeyi ve aktif bölgeye bitişik çekirdek etkileşimlerini yıkmaktadır. (B) Heliks αB’nin L49, L53 ve F56 hidrofobik çekirdeği oluşturmak için Leu181’in (β7) alifatik yan zinciri, W78 ile F79 (αC) ve W150’nin (β6) aromatik yan zincirleri ile paketlenmektedir. L49 mutasyonunda daha küçük olan Serinin girisi internal boşluk daha az olmakta ve bu enzim aktivitesinde artış azalmaktadır. (C) A80 β2 (Val86) ve β5 (Ile128) ipliğindeki rezidülerle hidrofobik etkileşimi yer almaktadır. A80’nin prolin ile yer değiştirmesi (A80P) heliks αC’nin son kırımındaki deformasyona neden olmaktadır ve L49’u kapsayan bitişikteki hidrofobik çekirdeğe etkilesimi destabilize etmektedir (B paneline bakınız). S125 β4 ve β5 ipliğin arasındaki ilmekte yerlemiştir. Ile128 ile etkileşen S123’un yan zinciri ve N127’nin temel zincir amidi ile iki hidrojen bağlı yapılmaktadır. S125’te daha küçük polar ve daha büyük alifatik rezidü ile yer değiştirilmiş (S125L), aktif bölgesinde uzak yüzeye bulunmasına rağmen, lokal yapıyı destabilize ederek protein düzeyinde ve aktivitede ~%60 azalmalara neden olmaktadır. (D) β9 ipliğinin Y240’ı H201 (αG’nin ilk rezidüsü) ile H bağlı oluşturur, K238 (β9) su ile etkileşiminin ve I204 (αG) ile van der Waals bağlanıslansa aracılık etmektedir. Daha küçük olan sistein ile Y240 yer değiştirmesi H201 ve K238 ile hidrojen bağımı ve bir boşluğun kaybolmasının beklenmektedir. Ek olarak, 240. rezidüdeki sistein lokal protein yapısını değiştirecek β8 ipliğinin C216 ile disülfit bağlı oluşturur. B8 ipliğinin R215’i Q213 (β8) ve T243 (β9) ile iki su arası yüzü etkileşimi vardır. Bu yüzeydeki mutasyon R125H protein düzeyi ve aktivitesine daha az etkisi vardır34.

A kategorisindeki mutantlar, β-iplinin merkezinde (C132Y, β5; Y180F, β7; Y240C β9) yerleşmiştir (Şekil 2.4) ve bunlar β6 iplinin karboksil ucunun hemen dış kısmında (A154T) veya molekülün hidrofobik çekirdeğini oluşturmak için, iplinin arası yüzünde birbirleri ile yan zincirlerin iç içe geçtiği helikslerde (A80P, αC; L49S, αB) bulunmaktadır. Bu intramoleküler hidrofobik ve internal polar etkileşimler (ör, Y180 ve Y240’ın hidroksil grupları) molekülün stabilitesi ve enzimatik fonksiyonun sürdürülmesi için gerekli olan ağı oluşturmakta. Y180, Y180-D151-Y166 hidrojen bağ ağında [Şekil 2.6 (A)] yer almaktadır. D151, β6 iplinin sondan ikinci rezidüsüdür ve molekülün merkezinde gömülmuştur. Bu kategorideki mutantların, molekülün hidrofobik merkezine etkileri, molekülü destabilize etmekte ve degradasyona daha hassas yapmaktadır. Diğer MTaz’larda β6 iplinin karboksil ucundaki rezidü ile ilgili bazı katalitik fonksiyonları vardır.34

K119T, S125L, R163H ve H227Q gibi B kategorisindeki mutasyonlar aktif bölgeden uzakta proteinin yüzeyinde yerleşmiştir. Bu yan zincirler, muhtemelen molekülün stabilitesine ek olarak diğer yüzey rezidüleri ile intramoleküler polar etkileşimlerde bulunmaktadır34.

2.1.5 Mutasyon Analizleri

A154 rezidüsü, aktif bölgesi ve kofaktör bağlama bölgesi ile etkileşimde [Şekil 2.6 (A)] kısmını yer almaktadır. Bu rezidünün merkezi lokasyonu A154T’nin immünoreaktif protein düzeyi ve aktivitesinde çok ağır bir değişime (WT’in sadece %1-2’si) neden olmasıyla tutarlıdır. Son yıllarda E.coli’de rekombinant TPMT allelik varyant proteinlerinin (TPMT*3A, *3B ve *3C) ekspresyonunda agrezom formasyonu oluşturma eğiliminde oldukları ve doğal olarak meydana gelen TPMT amino asit polimorfizmlerinin protein agregasyonunu yükseltbileceği gösterilmiştir34.

TPMT*2 (A80P) mutasyonu, proteinin yapısını değiştirmekte ve agregasyona neden olmaktadır. A80P protein düzeyi ve aktivitesinin yaklaşık dörtte biri korunmaktadır. Rezidü AdoHcy’den yaklaşık 20 A° uzaklaşmaktadır. A80 rezidüsü yerine geçen prolin (A80P), heliks αC’nin son dönüşünde deformasyona yol açmakta ve iki merkezi iplik olan β2 (V86) ve β5 (I128) ile etkileşimi [Şekil 2.6 (B) ve (C)] destabilize etmektedir34.
Y240, β9 ıpliğinin ortasında yer almaktadır. Heliks αG ve β8 ıpliği, polar hidrofobik etkileşimde yer almaktadır. Y240 rezidüsünde daha küçük olan sistein ile yer değiştirimesi (Y240C; TPMT*3C), H201 ve K238 ile hidrojen bağın kayıbedilmesine [Şekil 2.6 (D)] yol açmakta ve bir boşluk oluşturur. Ek olarak 240. pozisyondaki sistein, β8 ıpliğinin C216 ile disülfit bağı oluşturarak lokal protein yapısını değiştirebilmektedir.

2.1.5.1 TPMT*2 (A80P) Stimülasyonları

TPMT*2 alleli 80. rezidüde bulunan alanin prolin ile yer değiştirilmiştir. Bunun sonucunda TPMT aktivitesi yaklaşık 100 kat azalma ve çok düşük immünolojik protein düzeyine neden olmaktadır. TPMT*2 proteinin yarı ömrü 0.35 saate sahiptir ve ubikuitin yol ile proteozomlarda degradede edilmektedir. Rezidü 80, α3’te (Şekil 2.9 ve 2.10a) bulunmaktadır.

Rezidü 80’deki alanin prolin ile yer değiştirilmesi, M76 O-A80 N hidrojen bağı kırılmaktadır (Şekil 2.10a ve b) ve α3 heliksin son dönüşümünü dağıtılmaktadır. Bunun bir sonucu olarak, rezidü 80 TPMT*2’de α3 (K77, R82) ve β2 (G833 H84 ve V86) rezidüleri ile yan zincirlerinde bağlı (Şekil 2.10a ve b) oluşturur. Bu değişimler α2 ve α4’te artık değişim ile α3’ün geniş bir skalada yeni oryantasyonu (1.3 Å°) birleştirmesi ile sonuçlanmaktadır. Prolin helikleri kırıldığında ve kabartılı oryantasyon metastabil haldeydi. Prolin helikleri kabartlığına da bağlı olarak, α2 ve α4 kısmını stabil hale getirmektedir. TPMT*2’de K77’in yeniden paketlenmesi sonucunda α3 ve α4 arasında, (K77-E102) bu heliklerin yeni oryantasyonunu stabil hale getirir ve bu tuz köprüsünü oluşturur. Bu α4 ile kapalı birleştirm, wild-tip stimülasyonlarında görünmemiştir. Bu tuz köprüsünü sağlamakta. Ek olarak, TPMT*2’de α3 heliks yapısının kaybı, D54-R82 tuz köprüsünü dağıtmaktadır, α2’nin esnekliğini artırmaktadır.

Wild-tip stimülasyonlarında, α3’ün bir seri iyonik etkileşimler ile (Şekil 2.10a) α2 ve α4 kısmını stabil hale getirmektedir. TPMT*2’de K77’in yeniden paketlenmesi sonucunda α3 ve α4 arasında, (K77-E102) bu heliklerin yeni oryantasyonunu stabil hale getirir ve bu tuz köprüsünü oluşturur. Bu α4 ile kapalı birleştirm, wild-tip stimülasyonlarında görünmemiştir. Bu tuz köprüsünü sağlamakta. Ek olarak, TPMT*2’de α3 heliks yapısının kaybı, D54-R82 tuz köprüsünü dağıtmaktadır, α2’nin esnekliğini artırmaktadır ve α3’ün uzaklaşmasına (Şekil 2.10a) izin vermektedir.

- 16 -
Şekil 2.9. A80P, A154T ve Y240C polimorfizmleri. (a) TPMT’nin şerit (ribbon) diyagramı maviden (N-ucu) kırmızıya (C-ucu) doğru renklendirilmiştir. Polimorfik rezidüler 80, 154 ve 240 yerleri atomları renklendirilerek gösterilmiştir. SAH’in sülfür atomu F40 ve P196 rezidülerine doğru olan bölgede protein yüzeyindeki poru göstermektedir. Solvent molekül B3P ve SAH atomları renklendirilmiş ve meyan kökü renginde (licorice) gösterilmiştir. (b) TPMT’nin yapısı. Tiopürin bağlayıcı bölge β7 ve α8 ilme arasında ve α1, α6 ve α9 rezidülerinden oluşmaktadır. F40 ve P196, tiopürin substratlarının SAM ile etkileşmesini ve bağlanmasını sağlayan bir su kanalını göstermektedir (siyah ok). Bu, şekil a’da gösterilen yapının 90° döndürülmesidir. SAH, F40 ve P196 atomları renklidir.35
Şekil 2.10. Lokal tetramer yapıda TPMT polimorfizminin etkileri. (a ve b) A80 formunun yan zinciri α3 (K77, D81, R82), β2 (V86) ve β5 (N127, I128) ipliğindeki rezidüllerle bağlantısı vardır. A80P polimorfizmi intrahelikal 80N-M76 O hidrojen bağını, α3’ün son dönüsünü dağıtarak kırmaktadır. Bu β ipliğindeki çeşitli rezidüllerin K77 ile etkileşimini P80’nin kaybetmesiyle olmaktadır. (c ve d). A154 ve T154’ün hidrofobik CB atomları SAM-bağlayıcı bölgein iç yüzeyinde karşılaşmaktadır. Bununla birlikte, T154 OGI’i Y166 (α7)-D151 (β6)-Y180 (β7)氨基 dağıtarak, D151 ile ek hidrojen bağlı oluşturmakta ve SAM-bağlayıcı bölgeyi ayırmaktadır. (e ve f). Y240 β7 (L182, V184), β8 (I214, C216, L217), β9 (K238, L242) ve α8 (H201, L204, E205) da bulunan rezidüllerle etkileşmektedir. Daha küçük olan C240 β-iplik bağlantılılarının çoğunu sürdürmektedir, ama α8’deki rezidüllerle etkileşiminin çoğu kaybolmaktadır. Sekonder yapı elementleri Şekil 9’dağı gibi renkendirilmişdir. Polimorfik rezidüler space-filling ile yakınlarındaki yan zincirler licorice gösterim ile gösterilmiştir ve atom tiplerine göre renkendirilmiştir.\(^{35}\)
Bu lokal paketlenme değişimleri TPMT*2’nin aktif bölgesine önemli etkisi vardır. SAM-bağlama rezidüleri α2 (H41), α3 (L69, A73), β2 (E90) ve β5 (S134, Ν135) distal ucunda yerleşmiştir. A80P polymorfizmi oryantasyonu değiştirmektedir ve birkaç SAM-bağlayan rezidünün çevrilmekse TPMT*2’nin aktif bölgesine önemli etkisi vardır. Ek olarak, α2 de yapısal varyasyonlar SAM-bağlayan üç rezidüyü (L26, W29 ve W33) içeren α1’e çevrilmede ve aktif bölgesinin üzerine kısımı örtülmesine yol açmaktadır. Bütün bu değişimler TPMT*2’de ~200 A°’luk olan aktif bölgenin solvent geçebileceğini bölgeyi artırmaktadır. Bu nedenle belirgin bir şekilde hiç TPMT aktivitesi görülmemektedir (Şekil 2.11) yol açmaktadır.

TPMT*2 in vivo’da hızlıca degrade olmaktadır. Bunun sonucunda immünolojik olarak çok düşük protein düzeyi ve enzimatiğe aktivitede 100 kat azalmaya neden olmuştur35,43. α3’un kaybı, bütün protein yapısını bozan ve destabilize eden (Şekil 2.11b), α2 ile α1 yakındaki geniş bir skalada yeniden düzenlenmesine neden olmuştur. Bu substrat SAM’nın bağlanmasının önüne geçerek, aktif bölge solventinde büyük bir boşluga neden olmuştur. Bu nedenle belirgin bir şekilde hiç TPMT aktivitesi görülmemektedir35.

2.1.5.2 TPMT*3B (A154T) Stimülasyonları

Şekil 2.11. TPMT*2 aleli lokal tuz köprü ağını etkilemesi. (a) α3’ün kaybı D54-R82 yakınındaki tuz törpüsü dağılmakta ve K77-E102 tuz köprüsü oluşmakta/stabilize olmaktadır. Paketlenmenin değişimi distal ucunda SAM-bağlayıcı rezidüleri olan α2, α3, α4 ve β2’nin oryantasyonunu değiştirmektedir. Tuz köprü ağındaki ve SAM-bağlayıcı bölgedeki rezidüler sırasıyla space-filling ve licorice gösterimde, rezidü 80 macenta ile gösterilmiştir. (b) A80P polimorfizmi SAM-bağlayıcı bölgeyi değiştirilmektedir. α2’nin yeniden oryantasyonu SAM-bağlayıcı bölgeden α1’i kendine çekmekte, K77-E102 tuz köprüsü α3 ve α4 arasındaki etkileşim sikişirken, α4’ün hareketi aktif bölgeden uzaklaşmaktadır. Bu hareketler proteinde büyük bir cleft formasyonu ile sonuçlanmaktadır. α1, α3 ve α4 sırasıyla mavi, açık mavi (cyan) ve yeşil ile renklendirilmiştir. Rezidü 80 space-filling gösterimi ve rengi macenta rengi ile gösterilmiştir.
Başlangıçta yapıda A154’ün ana zinciri D151, A157 ve I158 hıdrojen bağları ve β1 (P69, L69), α6 (D151, G153, L155, V156, A157) ve α7 (Y166) deki rezidülerle (Şekil 2.10c) hıdrofobik bağlantısı oluşturmakta. Bu bağlantılar, stimülasyonlar boyunca sürdürülmektedir ve hatta polimorfik bölgede bu bağlantılar hafifçe geçiş yenecek, A154’ün solvent geçiçronlunun artırırmaktadır. A154’ün D151 ve Y166 ile hıdrofobik etkileşimi, D151 (α6)-Y166 (α7)-Y180 (β7) arasında (Şekil 10c) hıdrojen bağ ağını kolaylaştırırmaktadır. Bu SAM-bağlayıcı bölgeyi C-terminal β-iplinin ve varsayılan tiopürin-bağlayıcı bölgeyle (Şekil 10c) bağlantılı kurmaktadır. α6’da bulunan alanın hidrofilik treonin ile yer değiştirmesi sonucunda, rezidü 154 (L69,Y166) aracılığıyla oluşturan birkaç etkileşim bozulmakta polimorfik bölgenin solvente maruz kalması (Şekil 10c ve d) artmaktadır.35

2.1.5.3 TPMT*3C (Y240C) Stimülasyonları

Rezidü 240, merkezi β-tabakanın C-terminal kısmında β9’un merkezinde (Şekil 2.9) yerleşmiştir. Y240 amidi ve L182’nin karbonil grupları ile hıdrojen bağlarının temel zincirini ve β-tabaka yapısını sürdürmek için β7 deki rezidülerle (L182,V184), β8 (I124,C216,L217) ve β9 (K238, L239, L241, L242) van der Waals etkileşimini
oluşturmaktaadır. Tirozünün geniş yan zinciri, α8 (H201, I204, E205) deki birkaç rezidü ile (Şekil 2.10e) etkileşmektedir. Hidrojen bağlarının omurgası ve β-tabaka etkileşimleri TPMT*3C’de de vardır. Bununla birlikte, rezidü 240 ve α8 (H201, E205) arasındaki birkaç yan zincir etkileşimi (Şekil 2.10e) neden olmaktadır. C-terminal yapının gevşemesiyle, β8-α9 ilmekin genişlemesine ve proteinin� yerine totalde SAM-bölgesi veya tiopürin-bölgesinin solvent erişebilirliği hıç etkisinin olmadığı gösterilmiiştir35.

DeneySEL olarak TPMT*3C, wild-tip proteine göre immünolojik proteinin ve enzim aktivitesinin düzeyi daha düşültür. Ek olarak Y240C polimorfizmi, proteinin Tm derecesini 50°C’den 39°C’ye azaltmaktadır. İlginç olarak, SAM ko-substrat eklenmesi proteini degradasyonu koruyarak TPMT*3C’nin hem stabilitesini artırmakta ve hem de enzim aktivitesini kurtarmaktadır. Oysa TPMT*3B’de SAM eklenmesi ile hiçbir etki gözlenmemiştir. SAM’ın bu stabilize edici etkisi diğer polimorfik MT’larda da görülmiiştir. Bu yapısal etkiler SAM’ın varlığında asgari düzeyde etklenmesine neden olmaktadır. Burada tanımlandiği gibi TPMT*3C stimülasyonlarında, Y240C polimorfizminin ilmek yakınılıgı ve helikslerin yeniden düzenlenmesi ile birlikte bütün proteinin solvent geçirgenliği ve helikslerin yeniden düzenlenmesi ile birlikte bütün proteinin solvent geçirgenliğini artması, TPMT*3C deformasyonun erken safhalarında gösterilebilir35.

2.1.5.4 TPMT*3A (A154T/Y240C) Stimülasyonları

TPMT*3A alleli, A154T (α6) ve Y240C (β9) polimorfizmlerinin her ikisini bulundurmaktaadır. TPMT’nin topolojisi TPMT*3A stimülasyonlarında da korunmuştur. Bununla birlikte, protein genişlemekte ve fizyolojik saçıklıkta stimülasyonlar boyunca belirgin bir şekilde total solvent geçirgenliği değişerek daha yassı (Şekil 2.12) olmaktadır. Rezidü 154 ve 240, T154, D151 ve Y180 arasında yan zincir etkileşimlerini kapsayan hidrojen bağ ağı ile Y180 (β7)-L242 (β9) ve L182 (β7)-C240 (β9) arasındaki temel-zincir etkileşimleriyle bağlanmaktadır. Bu bağlanabilirlik tek mutant TPMT*3B veya *3C proteinlerde veya wild-tip stimülasyonlarında (Şekil 2.12) bulunmamıştır. Hidrojen bağ ağı

2.1.5.4 TPMT*3A (A154T/Y240C) Stimülasyonları

TPMT*3A alleli, A154T (α6) ve Y240C (β9) polimorfizmlerinin her ikisini bulundurmaktaadır. TPMT’nin topolojisi TPMT*3A stimülasyonlarında da korunmuştur. Bununla birlikte, protein genişlemekte ve fizyolojik saçıklıkta stimülasyonlar boyunca belirgin bir şekilde total solvent geçirgenliği değişerek daha yassı (Şekil 2.12) olmaktadır. Rezidü 154 ve 240, T154, D151 ve Y180 arasında yan zincir etkileşimlerini kapsayan hidrojen bağ ağı ile Y180 (β7)-L242 (β9) ve L182 (β7)-C240 (β9) arasındaki temel-zincir etkileşimleriyle bağlanmaktadır. Bu bağlanabilirlik tek mutant TPMT*3B veya *3C proteinlerde veya wild-tip stimülasyonlarında (Şekil 2.12) bulunmamıştır. Hidrojen bağ ağı
C-terminal SAM-bağlayıcı bölgenin paketlenmesi ve β-tabaka da Y240C etkilerinin translasyonunu kolaylaştırmaktadır35.

Polimorfik bölgenin solvete maruz kalmışında belirgin bir artışa sonuçlanan TPMT*3A’da Y240C polimorfizmi, ilk olarak rezidü 240 ve H201 ile α8’in E205’i arasındaki etkileşimin kaybına yol açmaktadır. C-terminal paketlenmesinin gevşemesi tiopürin-bağlayıcı bölgenin sınırındaki β8 ile β9 bağlantısı olan β7-α8 ilmeki ve α9’un yeniden düzenlenmesini (Şekil 2.12) sağlamaktadır. Bu yeniden düzenlenmenin bir sonucu olarak tiopürin bağlayıcı bölgenin solvete maruz kalaması belirgin bir şekilde artmıştır35.

A154T ve Y240C çift polimorfizmi hem \textit{in vivo} ve hem de \textit{in silico} da ek destabilize etkilerinin olduğu görünülmektedir. Bu allelede, protein düzeyinin ~400 kat azalmasına ve ölçülemeyecek enzim aktivitesine neden olmaktadır. TPMT*3A, wild-tip proteinden yaklaşık 72 kat daha az olan ~0.67 saat yarım ömrü ile hızlıca ubikuitin yoluya proteozomal olarak degrad edilmektedir. Bu degradasyon, \textit{in vitro} da TPMT aktivitesini ölçmek için çok hızlıdır. Buna zıt olarak, TPMT*3B ve TPMT*3C proteinerinin yarım ömrüleri sırasıyla 6 ve 11 saat ve analiz periyodunda immünolojik olarak tespit edilebilen protein kaybı olmamaktadır. Bu stimülasyonlar göstermiştir ki, A154T ve Y240C polimorfizmlerin her birinin destabilize edici etkileri bir hidrojen bağ ağı boyunca, TPMT*3A’da çift mutasyona bağlıdır. Bu TPMT*3A’nın azalmış stabilitesi için bir mekanizmanın olduğu görülümektedir. TPMT*3B ile *3C stimülasyonlarının her birinde görülen bütün yapının deformasyonu, TPMT*3A’da çok daha fazla olmasına neden olmaktadır35.

- 23 -
Şekil 2.12. TPMT*3A polimorfizmi proteinin yapısını üzerine etkisi. (a) TPMT*1 (WT), (b) TPMT*3C ve (c) TPMT*3A’nın başlangıç ve 20-nanosekunde (nanosaniye) yapıları şerit diyagramında gösterilmiştir. TPMT*3A yassılaşmaktadır ve stimülasyon esnasında gevşemektedir. Birbirlerinden oldukça uzak pozisyonlarda olmalarına rağmen, polimorfik 154 ve 240 rezidüleri bir hidrojen bağ ağıyla boyunca bağlantılıdır. β-ipliği 7 ve 9 Y180-L242 ve L182-C240 arasında omurga hidrojen bağları oluştururken, T154-D151-Y180 yan zincir etkileşimlerini oluşturmuştur. Bu etkileşimler stimülasyonların başından sonuna kadar korunmaktadır. (c) Y240C polimorfizmi heliks α8 deki rezidülerle bağlanışı kaybederken, A154T polimorfizmi SAM-bağlayıcı bölgenin açılmasına kolaylaştırılmıştır. Yan zincirler space-filling modunda ve atom tipleri renklendirilerek gösterilmiştir35.
2.1.6 Mutant TPMT Proteinlerinin Ubikuitin Yolu ile Yükümü

![TPMT ubikuitinasyonun potansiyel bölgeleri. TPMT protein yüzeyi boyuca dağılmış 21 lizin rezidüsü vardır. Proteinin yapısal olmayan bölgede yerlesmiş 5 lizin rezidüsü (K20, K37, K60, K145, K245) TPMT*2, *3B, *3C ve *3A da solvenle daha çok maruz kalmaktadır. Bu lizin rezidülerinin herhangi biri ubikuitinasyon için substrat olarak işlev görebilir. TPMT*3A’nın 37°C’de stimülasyonunda 20. nanosanayisinden serum diyagramı maviden (N-terminal) kırmızıya doğru (C-terminal) renklandırılmıştır. Lizin rezidüleri stick gösterimde, A154T ile Y240C polimorfik rezidüleri ise space-filling ile gösterilmiş ve atom tipleri renkendirilmişdir35.](image-url)
2.1.7 Nadir Mutant TPMT Allellerin Protein Yapısı

Bugüne kadar tanımlanmış protein aktivitesini ya da stabilitiesini etkileyen 26 TPMT alleli, protein boyunca dağılmış polimorfinger rezidüler (Şekil 2.14) olduğu gösterilmiştir35,42. Bu rezidülerden birkaç ya SAM- [TPMT*18 (G71), TPMT*21 (L69)] veya tiopürin-[TPMT*7 (H227Q), TPMT*17 (Q42E)] bağlayıcı bölgede bulunmaktadır. Üç allel, β8 (R215H, C216R) ve β9 (K238E) de Y240C polimorfizmi etrafında bulunmaktadır. Ek olarak Y180F (TPMT*6) polimorfizmi, C-terminal β-iplin SAM- bağlayıcı bölgesi ile bağlanmayı sağlayan hidrojen bağ ağını kuvvetli bir şekilde etkilemektedir35.

- 26 -
2.2 TPMT GENOTİP-FENOTİP İLİŞKİSİ

Şekil 2.15. Tiopürin metiltransferazın genetik polymorfizmi ve tiopürin ilaclarına (azatiopürin, merkaptopürin, tioguanin) yanıtı belirlenmesinde bu enzimin rolü. Soldaki panel insanda TPMT aktivitesinin otozomal kodominant kalıtılmının neden olduğu baskın TPMT mutant alleleri göstermektedir. Ardişık sağdaki diğer üç panel ise, tiopürin ilacıların konvansiyonel dozu tüm hastalara uygulandığı zaman, TPMT eksikliği olan hastalarda aktif TGN’lerinin sellüler konsantrasyonu belirgin şekilde (10 kat) birikmekte ve heterozigot hastalardaki yaklaşık iki kat yüksek TGN konsantrasyonu birikmiştir. Bunlar belirgin bir şekilde yüksek hematopoeitik toksisite siklüğuna (en sağ üst grafik) neden olmaktadır. Alttaki panellerde ise genotipe-spesifik tiopürin dozajı uygulandığı zaman, sellüler TGN konsantrasyonu karşılaştırılmış ve bütün üç fenotipte akut toksisite olmasına tedavi edilebilmektedir.

TPMT genotipi ve aktivitesi, miyelotoksisite ile korelasyon göstermektedir. Farklı hasta popülasyonu arasında yapılan birçok çalışmada tiopürin-indükleidiği toksisite hastalarda TPMT genotiplerinin çarpık dağılım gösterdiği bulunmuştur. Oysaki herhangi bir popülasyonda TPMT varyant sıklığı yaklaşık %10 olduğu bulunmuş, miyelotoksisitesi
gelişen hastaların %60-70’inde bir veya iki mutant TPMT alleline sahiptir. Tiopürin ilaçların toksisite mekanizması ilaç metabolitleri olan TGN’ler, DNA ve RNA’nın yapısına katılmaktadır. Birçok çalışmada yüksek TGN konsantrasyonu enzim aktivitesi düşük olan mutant TPMT alleleri arasında ilişki olduğu gösterilmiştir. Bu veriler önermektedir ki, doktorlar bu ilaçları reçete etmeden önce TPMT genotip veya enzim fenotipine bakarak ilaçların yan etki oluşma ihtimalinin yüksek olabileceğini belirleyebileceklerdir.

2.3 TİOPÜRİN METABOLİZMASI

![Şekil 2.16. 6-MP’nin aktif metabolitleri olan TGN’ye HGPRT tarafından dönüştürülmesi. TGN’leri DNA yapısına girerek miyelotoksisite ve antikanser etkisini göstermektedir. 6-MP, TPMT’nin metilasyonu ile 6-MMP metabolitinin oluşturularak inaktive edilmektedir. XO ile oksidasyon ugrayarak inaktivasyon olabilmektedir.](image-url)
Şekil 2.17. 6-merkaptopürin ve azatiopürin metabolizması. İnaktif metabolitlerin veya hepatotoksik veya miyelotoksik metabolitlerin oluşumunda rol oynayan enzimatik yolda komponentleri (TPMT, Tiopürin S-metiltransferaz; XO, ksantin oksidaz; HGPRT, hipoksantin guanin fosforiboziltransferaz; IMPDH, inozin monofosfat dehidrogenaz, GMPS, Guanin monofosfat sentaz)²⁷.
Bu ilaçların tam etki mekanizması bilmemektedir. Bununla birlikte, TGN’lerin etki mekanizması DNA-RNA sentezi ve kromozomal replikasyon ile birleşmesi ve interferansı, T ve B hücre profilerasyonunu inhibe etmesi ve natural-killer hücre sitotoksisitesi ile interferansını içermektedir²,¹³,²⁶,²⁷.

2.3.1 Merkaptopürin, Tioguanin ve Azatiopürinin Etki Mekanizması

Azatiopürin katabolizmasında bir anahtar enzim olan XO, allopürinol ile bloke olmaktadır. Azatiopürin ve allopürinol eş zamanlı kullanılsa, azatiopürin dozu kullanılan dozun %25-30’u kadar azaltılmalıdır; en iyi koşul ise bu iki ilacın birlikte kullanılmamasıdır. Anjiyotensin dönüştürücü enzim inhibitörleri veya immünosüpresif ilaçlarla azatiopürinin ortak kullanımdan doğan yan etkiler miyelosupresyon sonucunda lökopeni, trombositopeni ve anemi oluşturur.26

Azatiopürin ve merkaptopürin orta düzeyde plazma proteinlerine bağlanmaktadır ve kısmi olarak zardan geçebilmektedir. Her iki karaciğerde ve/veya eritrositlerde metilasyon veya oksidasyon ile hızla kandan uzaklaştırılmaktadır. Renal klerens, biyolojik etkinliğini veya toksisitesini az etmektedir. Renal bozukluğunda doz azaltılmalıdır.26

6-Tioguanin: 6-Tioguanin, 6-merkaptopürine benzer işlenen diğer bir pürin analogudur ve bundan dolayı çapraz rezistans gözlenir. Tioguaninin farmakokinetiği hakkında bilinenler çok az iken, dozun yaklaşık %30’u absorbse olduğu görülmektedir. Yan etkileri miyelosupresyon, hafif bulantı, kolestaz ve nadir olarak veno-okluzif hastalığıdır.48

6-Merkaptopürin, 6-tioguanin ve azatiopürin ajanların etki mekanizması aynıdır. Azatiopürin absorbsiyondan sonra aktif ilacı olan 6-merkaptopürine dönüşen bir prodrugdur.40 6-Tioguanin, 6-merkaptopüründe olduğu gibi aktive edilmektedir. Daha sonra HGPRT ile 6-TGN’lerine dönüştürülmektedir.2,13,14,23,26,40 Bunlar DNA ve RNA yapısına girerek sitotoksisite gelişiminde majör rol oynamaktadır.2,13,14,26,40 Azatiopürin enzimatik olmaya bir mekanizma ile 6-merkaptopürine ve metil-4-nitro-5-imidazol türevlerine hızla karıştırır.13,14,26 HGPRT ile iki enzim 6-TGN’nin intrasellüler düzeyini azaltmaktadır. İlk enzim olan XO, tioürik asit formasyonunu oluşturur.13,14,40 Bu 6-merkaptopürinin inaktivasyonunda önemli rol oynamaktadır ve XO inhibitörü olan allopürinol ile belirgin bir şekilde azatiopürin toksisite riskini arttırır. Bununla birlikte XO düzeyi bireyler arasında önemli farklılıklar göstermemektedir. 6-Merkaptopürin klerensinde rol oynayan ikinci enzim TPMT’dir. TPMT metil merkaptopürin formasyonu oluşturarak (Şekil 2.18) 6-merkaptopürinleri inactive etmektedir.40
2.3.2 Toksisite

6-Merkaptopürin, 6-tioguanin ve azatiopürinin toksisite doz sınırı tedaviye başlandıktan 1–4 hafta sonra miyelosupresyon oluşmakta ve ilaçlara devam edilmezse reversible olabilmektedir.

Enfeksiyonlara bağılı veya aşılar normale yakın.

Hepatotoksisite, 6-merkaptopürin alan hastaların bir kısmında görülebilir. Transaminazların yüksek düzeyine rağmen kolestatik tipte sarılık görüntüsü reversible ve genellikle hafiftir.

Hepatik nekroz ve venooklüzif hastalıklar gelişebilir. 6-Merkaptopürin ve azatiopürin potansiyel olarak teratojeniktir. Akut lösemi de 7q/-7 karyotip değişimi 6-merkaptopürin kullanımdan sonra görülmuştur ve tedavinin uzun süresiyle bağlantılı ciddi riskler oluşmuştur.

Bir vaka çalışmasında azatiopürin alınmasından 3 hafta sonra ağır pansitopeni gelişmiştir. Bu nedenle, bu hastalarda düşük enzim aktivitesine neden olan bir veya iki TPMT mutant alleli belirlenmiştir. Düşük aktivite fenotipinin tanısı için “gold standart” kırımızı kan hücrelerinde (RBC) TPMT enzim aktivitesinin ölçülmesidir. RBC’lerdeki aktivite diğer dokulardaki aktivite ile korelasyon göstermektedir. Bununla birlikte hasta 30–60 gün içinde kan transfüzyonu alınması aktivite sonucu yanlış olmaktadır. Geçmişte kan transfüzyonuna rağmen enzim aktivitesi 3.5 U ise düşük kabul edilmektedir (<6.7 U düşük, 6.7–23.6 U orta ve >23.6 ise U is normaldir). Azatiopürin metabolitlerinin kemik
iliği supresyonundan sorumlu olduğunu düşünülmektedir. Yapılan çalışmalar 6-TGN’lerin yüksek düzeyinin lökopeniye neden olduğunu gostermiştir. Hastaların 6-TGN düzeyi 1673 pmol/8x10⁸ RBC’dir (normali 230–400 ve >400 büyük ise lökopeni riski yüksektir). Bununla birlikte yüksek 6-TGN konsantrasyonu olmaksızın sitopeni geliş输给ünden 6-TGN’lerin ölçümünün faydası tartışmalıdır. Hasta yakın zamanda transfüzyon aldığında yaygın TPMT SNP’lerin genotip tayini yapılması gerekir.27.

2.3.3 Tedavi
Azatiopürin, 1968 yılında FDA tarafından renal transplant adaylarında ek immünosupresant olarak kullanılması için onaylandı. Bu ilacin oral ve IV dozaj formu bulunmaktadır. Siklosporin kullanılmadan önce azatiopürin ve kortikosteroidler immünosupresif tedavide başlica dayanak noktasydi. Organ transplantasyonu için azatiopürinin oral dozu günde 3–5 mg/kg’dir. IV ve oral dozları eşittir. İdame dozu genellikle transplantasyondan sonra birkaç hafta içinde günlük 1–2 mg/kg’a azaltılır. Ağır renal fonksiyon bozukluğu olan hastalarda dozun azaltılması gereklidir. Çünkü 6-merkaptopürin ve onun metabolitleri renal olarak elimine edilmektedir. 6-Merkaptopürin konsantrasyonu izlenilmemektedir; bununla birlikte birçok klinisyen miyelosupresyon ve karaciğer bozukluğu semptomlarını izlemektedir.23,50. Miyelosupresyon (genel olarak lökopeni ve trombositopeni) gelişmesi sık olarak doza bağlı ve doz-sınırlayıcı komplikasyon (hastaların %50’sinden fazlasında) olup, dozun azaltılması gerekmektedir. Diğer önemli yaygın yan etkiler hepatotoksisite (hastaların %2-10’u) ve GI problemlerden (hastaların %10-15’i, yaygın olarak bulantu ve kusma) oluşmaktadır. Kronik azatiopürin tedavisini takiben, hastaların %1’denden daha azında pankreatit ve karaciğer veno-okluzif gelişmekteştir.23,50.

Azatiopürin toksisitesinin neden olduğu pansitopeni ve miyelotoksisitesinin tedavisi deştekleçiyici tedavidir. Hastanede 38 günden fazla kalan bireyler 16 ünite kırmızı kan ve 19 ünite trombosit almaktadır. Azatiopürin tedavisi ve kemik iliği supresyonu sonucunda, artrit, CMV, HSV gibi viral enfeksiyonlar, genital sığiller ve hepatit, pnömoni, septik flebit (venöz endotel irritasyonu) gibi bakteri enfeksiyonların artma riski bulunmaktadır. Bakteriyesi sepsisi gelişen hastaların antibiyotik tedavisi yapılarka, pansitopenik hastalar...
ise CBC değerleri normale yakın olana kadar destek tedavisi almaktadır ve en az 6 ay boyunca her ay takip edilmelidir\(^{27}\).

Azatiopürin toksisitesi ile TPMT enzim aktivitesi arasında korelasyon göstermesinden dolayı doktorlar tiopürin ilaclarını reçete etmeden önce TPMT genotip veya fenotip tayinini istemektedir. Bütün hastalara azatiopürünün aynı başlama dozu verildiysese, hafif veya ağır toksisiteye neden toksik metabolitlerinin birikimi heterozigotlarda orta düzeyde ve TPMT aktivitesi eksik hastalarda ise sellüler TGN’lerin konsantrasyonu 10 kat daha fazla (\textit{Şekil 2.18}) olmaktadır\(^{2,4,5,11,18,20,23,24,26,27,33,51}\). İki fonksiyonel olmayan TPMT allelini taşıyan hastalar tiopürinlerin standart dozun %5-15’i\(^{3,5,18,20,24,27,29,52}\), bir mutant alleli olan heterozigotlara ise başlangıç olarak dozun %50-70’ini alarak TGN birikimi ve hematotoksisitesi azaltılabilir\(^{3,5,23,24,27,29}\). Pediatrik lösemili hastalarda tiopürinlerin doz yoğunluğu ile de ilişki vardır; düşük veya orta düzey TPMT aktivitesi olan hastalar tespit edildikten sonra, TPMT wild-tip hastalara daha uzun yaşam süresi ve tedaviye erken yant almak için yüksek doz verilmelidir\(^{23,27}\). Üretici firmalar hastalara tiopürin ilacıları verildiği zaman toksisite riskini azaltmak için laboratuvar bulgularıyla kontrol edilmesini önermektedir: CBC değerleri 4 hafta boyunca haftada bir veya iki, tedavinin geri kalan zamanında ise aylık takip edilmelidir\(^{23,27}\). İlaçların yan etkileri 100,000 kişiiden daha fazlasının ölümüne neden olmaktadır ve bu sayi yılda hastaneye giriş yapanların yaklaşık %5’i kadardır\(^{27}\). Bu nedenle tedaviden önce enzimlerde SNP’lerin varlığının tespit edilmesi hastane masraflarını daha düşük tutmakla birlikte, ölüm ve toksisite oranını da azaltabilir. Kişisel ilaç tedavisi TPMT vakalarında olduğu gibi daha ekonomik ve daha etkili hasta tedavisi ile sonuçlanabilir\(^{2,12,27,29,33}\).
2.3.4 Dermatolojide Azatiopürinin Kullanımı

Azatiopürin dermatolojik uygulamalarda, pemfigus vulgaris, büloz pemfigoid, dermatomyozit, atopik dermatit, kronik aktinik dermatit, lupus eritematozus, sedef hastalığı, piyoderma gangrenozum ve Behçet hastalığını içeren inflamatuar ve otoimmün dermatozlar için steroid-tutumlu ilaç olarak kullanılmaktadır. Normal başlangıç dozu 1–2 mg/kg/gündür. Hastalığı tedavide bu ilaca erken başlanmasıyla, terapötik etkinlik 6–8 haftada elde edilmektedir. Dikkatli laboratuvar kontrolü önemlidir.26

2.3.5 Farmakogenetik

Hastaların üçte ikişinden fazlası azatiopürin ile merkaptopürine yanıt vermektedir. Merkaptopürinin üç metabolik yolu vardır:
1. XO tarafından 6-tioürik asite dönüştürülür
2. TPMT ile 6-metil-merkaptopürine metabolize edilir
3. HGPRT ile 9-TGN’leri ve diğer metabolitlere dönüştürülür.

Bu farklı yolların aktiviteleri, etkinliği ve bunların immünsupresif yan etkileri kısmi olarak bireysel varyasyonlarla açıklanabilir.13,14,26 Merkaptopürinin plazma yarılanma ömrü (t1/2) eritrosit ve diğer dokularda alınımı (1–2 saatte) rölatif olarak hızlıdır. Bu dokulara alınımı takiben TPMT aktivitesindeki farklılık, bu ilacın yolağını belirlemektedir. TPMT aktivitesi düşük olan bireylerin merkaptopürinin metabolizmasında, 6-metilmerkaptopürin oluşumundan kaçınarak ağır kemik iliğini suprese edebilen 6-TGN’leri oluşturmaktadır. TPMT aktivitesi orta düzeydeki bireylere standart doz verildiği zaman, normal metabolize eden bireylere göre daha yüksek 6-tioguanin düzeyine sahip olma eğilimindedirler. Yüksek TPMT aktivitesine sahip bireyler merkaptopürünü 6-TGN’lerinden çok 6-metilmerkaptopürine dönüştürmektedir ve anormal karaciğer fonksiyon testlerine sahiptir. Ek olarak hızlı metabolize eden bireylerin 6-tioguanin düzeyi, normal metabolize eden bireylere göre daha düşük olup, bu da muhtemelen terapötik yanıtını azaltmaktadır.2,12,23,24,26,28,34
3. GERÇEK ve YÖNTEM

3.1. GERÇELER

3.1.1. Cihazlar
- Hassas terazi (Mettler AJ 100)
- Otomatik pipet (Gilson 5, 10, 20,100,200, 1000 μL)
- Spektrofotometre (Schimadzu)
- pH metre (Beckman, Century SS-1)
- Santrifüj (Sentrifuge 5403)
- Mikro santrifüj (Heraeus Biofuge pico)
- Minigel elektroforez tankı (BioRAD SUBCELL GT)
- Düşük voltaj güç kaynağı (BioRAD PAC 300)
- Etüv (Memmert)
- Thermal Cycler (Biometra TPersonal Thermalcycler)
- Mikrodalga fırın (Arçelik MD 551)
- UV lamba (UVP)
- Jel görüntüleme sistemi (UVI Tec)
- Derin dondurucu (-20°C Bosch)
- Agencourt SPRIPlate 96R ring magnetic plate (A29164)
- DNA dizi analizi (Beckman Coulter CEQ 8000)

3.1.2. Kimyasal Malzemeler
- Tris (Amresco)
- Borik asit (Carlo Erba Reagenti)
- Etidyum bromür (Sigma)
- Steril dH2O
- *Taq* polimeraz (Perkin Elmer Cetus Amlı Taq)
- Amonyum sülfat (Sigma)
• Proteinaz K (Sigma)
• Amonyum bikarbonat (Sigma)
• Sodyum dodesilsülfat (SDS) (Sigma)
• Fenol (Merck)
• Kloroform (Merck)
• Potasyum klorür (BDH)
• dNTP (Promega)
• Spermidin (Sigma)
• Agaroz (Sigma)
• Bromfenol mavisi (Sigma)
• EDTA Na₂ (Merck)
• Etil alkol (Merck)
• MgCl₂ (Sigma)
• Gene Amp Tüp (Perkin Elmer)
• Agencourt AMPure Kit (A50850)
• Agencourt CleanSEQ Kit (A29151)
• Capillary Array, DNA Separation, GenomeLab 33 cm x 75 µm (608087)
• GenomeLab DTCS Quick Start Kit (608120)
• Buffer, Separation, GenomeLab Sequencing (608012)
• GenomeLab Separation Gel LPA-1 (608010)
• Mineral Oil
• Sample Loading Solution (Beckman Coulter)
3.2 ÖRNEK TOPLAMA

3.3. YÖNTEMLER

3.3.1. Tam Kandan DNA İzolasyonu

3.3.1.1 Çözelti

1) Parçalayıcı (Lizis) Tampon: 3.57 g Amonyum klorür ve 0.035 g Amonyum bikarbonat distile suda çözülen 1 L’ye tamamlanır.
2) Tampon:
 - 4M NaCl: 3.75 mL
 - 0.5 M EDTA Na₂ (pH 7.5): 5.0 mL
 - SDS (%0.1): 100 mg
 - Proteinaz K (25mg/mL): 0.2 mL
 Distile suda çözülen 100 mL’ye tamamlanır
3) Doymuş Fenol Çözeltisi:
4) Kloroform
5) %70’lik Etil Alkol
3.3.1.2 Yöntem

1) 1 mL EDTA'lı tam kan üzerine 3 mL soğuk parçalayıcı tampon eklenip 10 dakika buz içinde bekletilir
2) +4°C’de 5000 rpm’de 5 dakika santrifüj edilerek süpernatan atılır ve bu işlem iki kez tekrarlanır
3) Lökosit pelleti üzerine 1 mL tampon eklenerek hafifçe karıştırılır ve 37 °C’de bir gece bekletilir
4) Süre sonunda tüplere 400 μL fenol, 400 μL kloroform eklenir ve bu karışım 5000 rpm’de 3 dakika santrifüj edilir. Üst faz başka bir tüpe alınır ve bu işlem 2 kez tekrar edilir.
5) Kloroform ile bu işlem 2 kez tekrar edilir
6) Tüpler santrifüj edilerek süpernatan 5 mL %95’lik etil alkol içine aktarılarak tüp yavaşça altüst edilerek DNA’nın ipliksi bir görünüm alınması sağlanır. DNA ipliksi bir görünüm aldıktan sonra 13,000 rpm’de 3 dakika santrifüj edilerek DNA çökeltisi elde edilir
7) Süpernatan dökülerek DNA’nın kuruması için tüp ters çevrilir
8) Pelletin büyüklüğüne göre üzerine 40–100 μL saf su eklenip DNA’nın çözünmesi için bir gece 37°C’de bekletilir
9) DNA çözüldükten sonra konsantrasyonu hesaplanır;
 \[\text{Konsantrasyon (μg/mL)} = \frac{\text{OD}_{260}}{\text{Sulandırma oranı (120)}} \times 50 \]
Verim= \(\frac{\text{OD}_{260}}{\text{OD}_{280}} \) formülünden hesalanır.
Bu oranın 1.5-1.8 arasında olması beklenir.

3.3.2 Polimeraz Zincir Reaksiyonu (PCR)

Daha sonra, PCR temeline dayalı çok sayıda yöntem geliştirilmiştir. PCR’ın çok yönlü ve hızlı yapılabilmesi moleküler tanida devrim yapmıştır 54-61.

PCR’ın temeli üç aşamadan oluşmaktadır: genomik DNA’nın ısı ile denatürasyonu, sentetik oligonükleotid primerlerinin yapımı ve yapmış primerlerin DNA polimeraz ile uzama (Şekil 3.1) işlemidir. Bu üç aşamalı siklus daha sonra birçok kez tekrar edilmekte ve her tekrarda ürün yaklaşık iki katı artmaktadır 54-61.

Konvansiyonel PCR genellike 20–100 μL hacimde gerçekleştirilir. Deoksi nükleotid trifosfatlardan (dATP, dCTP, dGTP ve dTTP) her birinden 200 μM, her primerden 10-100 pmol, uygun tampon, MgCl2 ve DNA polimeraz içermektedir 54-61.

Oligonükleotid primerleri genellikle 18–30 baz çifti uzunluğunda, GC içeriği yaklaşık %50 oranındadır. Primerin 3' ucunda primer-dimer oluşumundan kaçınmalıdır. GC’ce zengin dizide spesifik olmayan eşleşmeyi azaltmak için Primerin 3' ucunda üç veya daha fazla C ve G içeriğinden kaçınmalıdır. Primerler genellikle 100 ve 1000 bç arasında amplifikasyon için kullanılmaktadır. Bununla birlikte çok yüksek sensitiviteli aplikasyonlar için kısa PCR ürünleri tercih edilmektedir 54-58.

Birkaç primer seti ortak DNA’dan farklı hedef bölgelerin amplifikasyonu tek bir tüpte yapılabilir. Bütün PCR reaksiyonlarında aynı etkinliği elde etmek için farklı primer setinin erime sıcaklıklarını (Tm) yakın olmalıdır. Bu multipleks PCR tekniği, infeksiyon ajanlarının ve onkogen mutasyonlarının belirlenmesi gibi geniş kullanım alanları vardır.

Primerlerin yapımı için gerekli olan zaman ve sıcaklık, baz kompozisyonuna, uzunluğuna ve prımerin konsantrasyonuna bağlıdır. Yaklaşık %50 GC içeriği ve 18-30 baz uzunluğunda primerlerin yapımı sıcaklığı 55°C’de 1-2 dk olması gerekir. Yapışma sıcaklığı >60°C ise, yapışma ve uzama aşamalarını birleştirmek mümkünür 54-58.

Şekil 3.1. Polimeraz zincir reaksiyonun şematik görünümü. Her siklusta yeni sentezlenmiş olan DNA kesik çizgi olarak gösterilmiştir. Oligo nükleotidler diktörtgen şeklinde gösterilmiştir.54
3.3.2.1 Çözeltiler

1. 10X Tris Tamponu

 2M KCl 1.25mL
 1M Tris.HCl (pH 8.3) 0.5 mL
 1M MgCl₂ 75 µL
 Jelatin 5 mg
 Steril distile su 3.2 mL
 Jelatinin erimesi için 37 °C'de bekletilir.

2. Spermidin 1 M

3. PCR Karışıımı (4 mL)

 10X Cetus tamponu 500 µL
 Steril distile su 2700 µL
 1.25mM dNTP karışıımı 800 µL
 Spermidin 1M 4 µL
 dNTP'lerin (dATP, dCTP, dGTP, dTTP) her birinden (100 mM'lık stoktan) 60 µL alınıp üzerine 4740 µL steril distile su eklenerek 1.25 mM'lık çözelti hazırlanır.

3.3.2.2 Yöntem

Gen amplifikasyonu, Thermal Cycler ile ısıya dayanıklı mikrotüpler içerisinde yapılır. Amplifikasyon tüplerinin yerleştirildiği bir ısı bloğu ve ısı değişimlerini kısa sürede gerçekleştiren bir mikro işlemciden oluşan bu alettermal döngü protokolleri önceden belirlenerek uygulanabilir.

3.3.3 Amplification Refractory Mutation System (ARMS)

Nokta mutasyonlarının veya küçük delesyonların analizi için genel bir teknik olarak ARMS yöntemi kullanılmaktadır. ARMS yönteminde 3'-OH kalıntıındaki uyuşmazlık dışında belirli DNA dizisini tanımlayıcı tepkimeden oluşur. Bu yöntemde birinci tepkime, normal DNA dizisine özgül primeri içerir ve belirli bir yerdeki mutant DNA’yı amplifiye edemez. Benzer olarak ikinci tepkime mutanta özgül primer içerir ve normal DNA’yı amplifiye edemez. Bunun sonucunda normal bir birey yalnızca normal tepkimede PCR
ürünü oluştururken heterozigot her iki tepkime, homozigot ise yalnızca mutant tepkimede PCR ürünü oluşturur^{58,62}. ARMS yönteminde kullanılan PCR karışımda;

<table>
<thead>
<tr>
<th>PCR Karışımı</th>
<th>21.9 μL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5' Forward Primer</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>3' Reverse Primer</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>gDNA (0.5-1 μg/mL)</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>Taq polimeraz (5 U/μL)</td>
<td>0.1 μL</td>
</tr>
<tr>
<td>Toplam hacim</td>
<td>25.0 μL’dir.</td>
</tr>
</tbody>
</table>

TPMT*2 genotipinin belirlenmesi için, ARMS yönteminde kullanılan ortak ve kontrol primerleri **Tablo 3.1** verilmiştir. Kullanılan bu primerler ile TPMT genine ait 3. ekson amplifiye edilmektedir. TPMT*2 tanısı için amplifiye edilen TPMT gen bölgesi ve kullanılan primerlerin yerleşimi **Şekil 3.2’de gösterilmiştir**^{7,13,16,32,63-70}.

Tablo 3.1. TPMT*2’nin genotipinin belirlenmesinde kullanılan primerler

<table>
<thead>
<tr>
<th>Primer Adı</th>
<th>Primer Dizisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPMT*2</td>
<td></td>
</tr>
<tr>
<td>P2C*</td>
<td>5'- TAA ATA GGA ACC ATC GGA CAC -3'</td>
</tr>
<tr>
<td>P2W*</td>
<td>5'- GTA TGA TTT TAT GCA GGT TTC -3'</td>
</tr>
<tr>
<td>P2M*</td>
<td>5'-GTA TGA TTT TAT GCA GGT TTG -3'</td>
</tr>
</tbody>
</table>

EKSON III

Phe Ala Asp Arg Gly His Ser Val Val Gly Val Glu Ile Ser Glu Leu

Cd79 G TTT GCA GAC CGG GGA CAC AGT GTA GTT GTG GAA ATC AGT GAA CTT
 Gly Ile Gin Glu Phe Phe Thr Glu Gin Asn Leu Ser Tyr Ser Glu Glu
Cd95 GGG ATA CAA GAA TTT TTT ACA GAG CAG AAT CTT TCT TAC TCA GAA
 Pro Ile Thr Glu Ile Pro Gly Thr Lys Val Phe Lys
Cd111 CCA ATC ACC GAA ATT CCT GGA ACC AAA GTA TTT AAG

INTRON III

gttgagttgtttaaatattgttat ccatatccc acaaaagtttt ttctcaggtt
gagtattatg agataacctc tcattgcggc gatggctctc attta ← Primer P2C

Şekil 3.2. TPMT*2 (G238C; A80P) mutasyonunu tanımlamada kullanılan primerlerin yerleşimi. G238C mutasyon noktası büyük harfe işaretlenmiş, gri boya alanlar ise primerlerin eşleştigi diziyi göstermektedir.
3.3.3.1. Termal Cycler PCR Protokolü

ARMS yöntemi ile amplifiye edilmek istenen DNA uzunluğuna ve primer içeriğine bağlı olarak sıcaklık ve süre değişmektedir. TPMT*2’yi belirlemek için kullanılan PCR protokolü Tablo 3.2’de gösterilmiştir.

Tablo 3.2. ARMS yönteminde kullanılan PCR programı.

| Sıcaklık | Süre | Etkinlik | Dönüştek
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>5 dk</td>
<td>Ön denatürasyon</td>
<td>→1 döngü</td>
</tr>
<tr>
<td>94°C</td>
<td>45 sn</td>
<td>Denatürasyon</td>
<td></td>
</tr>
<tr>
<td>62°C</td>
<td>45 sn</td>
<td>Primer bağlanması</td>
<td>→30 döngü</td>
</tr>
<tr>
<td>72°C</td>
<td>90 sn</td>
<td>Zincir uzaması</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>10 dk</td>
<td>Son döngüde zincir uzaması</td>
<td>→1 döngü</td>
</tr>
</tbody>
</table>

3.3.3.2. Agaroz Jel Elektroforezi

Agaroz jel elektroforezi; amplifiye edilmiş DNA molekülünün tanımlanması, ayrıştırılması ve saflaştırılması için kullanılır. Agaroz jelde DNA molekülerinin içerdikleri nükleotid sayısının logaritmasının ters orantılı olarak anoda doğru göç ederler. Bu göç hızı jele eş zamanlı aplike edilen kontrol DNA ile birlikte değerlendirilir.

3.3.3.3 Çözümler

1) 5×Tris Borat EDTA (TBE) Tamponu pH 8.0:
 Tris baz 54.0 g
 Borik asit 27.5 g
 EDTA [0.5 M, pH:8.0] 20 mL
Bir miktar saf suda çözünerek 1 L’ye tamamlanır.
2) Elektroforez için 0.5X TBE Tamponu:
 5×TBE’den 10 mL alınarak saf su ile 200 mL’ye tamamlanır.
3) %2’lik Agaroz jel:
2 g Agaroz 100 mL 0.5×TBE tamponu içerisinde mikrodalga fırında eritilir. Hafif soğuyunca jel kaplarına dökülür.

4) Yükleme tamponu
 - Brom fenol Mavisi %0.05
 - Gliserol %10
 - Ficoll %15
 - 0.5×TBE tamponu ile 100 mL’ye tamamlanır.

5) Etidyum Bromür çözeltisi:
 - Etidyum Bromür 5 µg/µL olacak şekilde saf suda çözülerek hazırlanır.

3.3.3.4 Yöntem

0.5×TBE tamponu içinde mikrodalga fırında çözülen %2’lik NuSieve-Agaroz jel elektroforez kapları içine dökülür. Soğuduktan sonra 0.5×TBE tamponuyla dolu elektroforez坦克 içine yerleştirilir. Jel içindeki taraf çıkarılıp aplikasyon kuyuları tampon ile doldurulur. Amplifiye örnekten 15 µL ile yükleme tamponu karıştırılarak kuyulara aplike edilir. Bu jel 150 volta 30 dakika yürütülüp elektroforez sonrası jel, etidyum bromür ile 3 dakika boyanır ve saf suda yarırm saat bekletilerek boya atıklarından temizlenir. UV ışığı altında DNA fragmanlarının fotoğrafı çekilerek değerlendirilir.

3.3.4. TPMT*3B ve TPMT*3C’nin Multipleks PCR-ARMS Yöntemi ile Belirlenmesi

Multipleks ARMS yöntemiyle TPMT*3B ve TPMT*3C mutasyonları tespit edilmiştir. ARMS1 karışımı, TPMT*3B’nin wild-tipe spesifik primer ve TPMT*3C mutasyona spesifik primeri içermektedir. ARMS2 karışımı ise TPMT*3B’nin mutasyona spesifik primer ve TPMT*3C’nin wild-tipe spesifik primer karşışından oluşmuştur. Böylece iki reaksiyonda bu varyantlar tespit edilmektedir. Bu iki varyanti tespit etmek için kullanılan primerler Tablo 3.3’te verilmiştir.11
Tablo 3.3 Multipleks ARMS’ta kullanılan primerler.

<table>
<thead>
<tr>
<th>Primer Adı</th>
<th>Primer Dizisi⁴⁺</th>
<th>Reaksiyon</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPMT460WTC (Forward)</td>
<td>5'- ATT TGA CAT GAT TTG GGA TAG AGG TG-3'</td>
<td>ARMS1</td>
</tr>
<tr>
<td>TPMT719MUd (Reverse)</td>
<td>5'- TAT GTC TCA TTT ACT TTT CTG TAA GTA GTC -3'</td>
<td>ARMS1, ARMS2</td>
</tr>
<tr>
<td>TMPT460Cb (Reverse)</td>
<td>5'- AGG TCT CTG TAG TCA AAT CCT ATA CT -3'</td>
<td>ARMS1, ARMS2</td>
</tr>
<tr>
<td>TPMT719Cb (Forward)</td>
<td>5'- ATT TTT AGT AGA GAC AGA GTT TCA CCA TCT -3'</td>
<td>ARMS2</td>
</tr>
<tr>
<td>TPMT460MUd (Forward)</td>
<td>5'- ATT TGA CAT GAT TTG GGA TAG AGG TA -3'</td>
<td>ARMS2</td>
</tr>
<tr>
<td>TPMT719WTc (Reverse)</td>
<td>5'- TAT GTC TCA TTT ACT TTT CTG TAA GTA GTC -3'</td>
<td>ARMS1</td>
</tr>
</tbody>
</table>

* Mismatch bazlarının altı çizili, ⁴ Ortak primerler, ⁺ wild-tipe spesifik primerler, ⁻ mutanta spesifik primerler

TPMT*3B ve TPMT*3C’yi belirlemek için kullanılan PCR protokolü, TPMT*2’yi belirlemek için kullanılan PCR protokolünden tek farklı primer yapışma sıcaklıĞının 64°C olmasını dıırdı. Benzer şekilde PCR örnekleri %2’lik agarozda 150 V’ta 30 dk yürütülerek genotip tayini yapılılar.

3.3.5 Restriction Fragment Length Polymorphism (RFLP)

Mutasyon içeren DNA parçası PCR ile amplifiye edilerek mutasyon noktasını tanıyan bir restriksiyon endonükleaz ile inklübe edildikten sonra jel elektroforezinde ayrıştırılır. Fragmant parça uzunluklarına göre genotipi belirlenir. Amplifikasyon için PCR protokolü **Tablo 3.2’teki gibi yapılmıştır.** TPMT*3B mutasyonunun tanımlanması için P460Fb ve P460Rb, TPMT*3C mutasyonunun tanımlanması için ise P719Fb ve P719R primerleri kullanılarak amplifikasyon yapılmıştır. Amplifikasyon kontrolü %2’lik agaroz jel ile yapıldıktan sonra 10 µL PCR ürünü yeni bir PCR tüpüne alınıp üzerine 1 µL restriksiyon (5U/µL) enzimi eklenir. TPMT*3B mutasyonunu tanımlamak için MwoI, TPMT*3C mutasyonunu tanımlamak için AccI restriksiyon enzimi kullanılmıştır. Bir gece 37°C de inklübe edildikten sonra %3’lük agaroz jeli (NuSieve Agaroz 1,5 g, Agaroz 1,5 g) hazırlanarak, kesilen PCR ürünü hepsi 150 V’ta 30 dk yürütüllür. Jel etidyum bromür ile
boyanarak sonuçlar değerlendirilir13,16,17,23,32,43,63-85. TPMT*3B ve TPMT*3C’nin tanımlanması için kullanılan primerler ve reaksiyon enzimleri Tablo 3.4’te gösterilmiştir.

\begin{center}
\textbf{Tablo 3.4} RFLP yönteminde kullanılan primerler ve reaksiyon enzimleri86
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
TPMT Tipi & Primer Adı & Primer Dizisi & Rest. Enzimi \\
\hline
TPMT*3B & P460Fb & 5'-AGG CAG CTA GGG AAA AAG AAA GGT-3' & MwoI \\
 & P460Rb & 5'-CAA GCC TTA TAG CCT TAC ACC CAG G-3' & \\
TPMT*3C & P719Fb & 5'-GAG ACA GAG TTT CAC CAT CTT GG-3' & AccI \\
 & P719R & 5'-CAG GCT TTA GCA TAA TTT TTA ATT CTT C-3' & \\
\hline
\end{tabular}
\end{center}

TPMT genin 5. eksonu P460Fb ve P460Rb primerleri ile amplifiye edilmektedir. TPMT*3B’yı tanımlamak için amplifiye edilen bölge, primer yerleşimi, \textit{MwoI} reaksiyon enziminin kesim noktası ve mutasyonun yeri Şekil 3.3’te gösterilmiştir. TPMT*3B’deki G460A mutasyonu \textit{MwoI} reaksiyon enziminin kesim noktasını kaldırırmaktadır.

\begin{center}
\textbf{Primer P460Fb} →
\end{center}

\begin{center}
\begin{verbatim}
aggca gctagggaaa aagaaaggtg agtaagacag tgcctttctac cttgcacctg
gccctgttaat aqagaatgat tttcacttagc caagggagat aagagctcat ctcccgtaaag
tccctgtatcc cttgaccgca cgcctggggcc agagttggtg cacaacttcc ttgtttctttt
ttcctgttcc ccaaatctca acaagaggag gcgctgctg ccaagctttc cttaaaccat

gagggcatgg acagcttccc acacccagtt ccacacacetc ctctaggagg aacgcagcac
gtagatcctt ataaccttgg aagttggttg aqtagaccaga tcaccctaggg ggcgctgtc
tctctttcctt aagatgtgta tttttctttcc ctaaaatgtt tttttcttttt ctggtag
\end{verbatim}
\end{center}

\textbf{EKSON V}

\begin{center}
Thr Asn Ile Gly Lys Phe Asp Met Ile Trp Asp Arg Gly Ala Leu Val
\end{center}

\begin{center}
Cd141 G ACA AAT ATT GCC AAA TTT GAC ATG ATT TGG GAT AGA GGA GCA TTA GTT
\end{center}

\begin{center}
Ala Ile Asn Pro Gly Asp Arg Lys Cys
\end{center}

\begin{center}
Cd157 GCC ATC AAT CCA GGT GAT CGC AAA TG
\end{center}

\textbf{INTRON V}

\begin{center}
ptaagtatt ttttttttttt ttttttctgc ttttaatatc tatatacttat atacttttcttttc
tggttttagc ttttctctacttag cttagtgatt atgtttttggaa
tttataaaaa cttatatcct cttatatcct tcatatatcgt cactaagacgc gccggttcagc gtatagtatt gcattttttttttttc
\end{center}

\begin{center}
Primer P460Rb ←
\end{center}

\begin{center}
\textbf{Şekil 3.3}. TPMT*3B (G460A; Ala154Thr) mutasyonunu tanımlamak için amplifiye edilen bölge. Bu mutasyonu tanımlamak için amplifikasyonda kullanılan primerlerin yerleşimi ile \textit{MwoI} reaksiyon enziminin geni tanıdığı bölge gri renke ve G460A mutasyon noktası ise koyu büyük harfe işaretlenmiştir.
\end{center}
TPMT geninde 8. ekson P719Rb ve P719Fb primerleri ile amplifiye edilmektedir. TPMT*3C’yi tanımlamak için amplifiye edilen bölge, primer yerleşimi, restriksiyon enziminin kesim noktası ve mutasyon noktası Şekil 3.4’te gösterilmiştir. TPMT*3C’deki A719G mutasyonu AccI enzimine yeni bir kesim noktası oluşturmuştur.

Primer P719Fb→

```
gagacagagt ttcaccatct tggcaggct ggtcatgaac tcctgacctc aagtgtaca cacgmgac ccctgggttt ccttgtatgg taaaagaat cctggatgtc attcttcata gtatatttaac atggtaacct ctctttggtt ctctttggtt ag
```

EKSON VIII

<table>
<thead>
<tr>
<th>Lys</th>
<th>Ile</th>
<th>Cys</th>
<th>Leu</th>
<th>Glu</th>
<th>Lys</th>
<th>Val</th>
<th>Asp</th>
<th>Ala</th>
<th>Phe</th>
<th>Glu</th>
<th>Glu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd210</td>
<td>GT</td>
<td>AAA</td>
<td>ATA</td>
<td>TGC</td>
<td>AAT</td>
<td>ATA</td>
<td>CGT</td>
<td>TGT</td>
<td>CTT</td>
<td>GTA</td>
<td>GCT</td>
</tr>
<tr>
<td>Arg</td>
<td>His</td>
<td>Lys</td>
<td>Ser</td>
<td>Trp</td>
<td>Gly</td>
<td>Ile</td>
<td>Asp</td>
<td>Cys</td>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
</tr>
<tr>
<td>Cd226</td>
<td>CGA</td>
<td>CAT</td>
<td>AAA</td>
<td>AGT</td>
<td>TGG</td>
<td>GGA</td>
<td>ATT</td>
<td>GAC</td>
<td>TGG</td>
<td>CTT</td>
<td>TTT</td>
</tr>
<tr>
<td>Thr</td>
<td>Glu</td>
<td>Lys</td>
<td>Stp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd243</td>
<td>ACA</td>
<td>GAA</td>
<td>AAG</td>
<td>TAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

İNTRON VIII

```
atgagacata gataaaataa aatcacactg acatgttttt gaggaattga aaattatgct aaagcctg ←Primer P719Rb
```

Şekil 3.4. TPMT*3C (A719G; Tyr240Cys) mutasyonunu tanımlamak için amplifiye edilen bölge. Bu mutasyonu tanımlamak için amplifikasyonda kullanılan primerlerin yerleşimi ile AccI restriksiyon enziminin geni tanıdığı bölge gri renk ve A719C mutasyon noktası ise büyük siyah harf le işaretlenmiştir.

Tablo 3.5 TPMT mutasyonlarının RFLP ile tiplendirilmesi.

<table>
<thead>
<tr>
<th>Genotip</th>
<th>RFLP ile TPMT MUTASYON ANALİZİ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TPMT*3B</td>
</tr>
<tr>
<td>Mutasyonu</td>
<td>G460A (Ala154Tyr)</td>
</tr>
<tr>
<td>Primerler</td>
<td>P460Fb-P460Rb</td>
</tr>
<tr>
<td>Amplifikasyon Uzunluğu</td>
<td>694 bç</td>
</tr>
<tr>
<td>Restriksiyon Enzimi</td>
<td>MwoI</td>
</tr>
<tr>
<td>Tanıma Bölgesi</td>
<td>5'-GCNNNNN^NNGC-3'</td>
</tr>
</tbody>
</table>

GENOTİPLENDİRME

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT / WT</td>
</tr>
<tr>
<td>Heterozigot</td>
</tr>
<tr>
<td>Homozigot</td>
</tr>
</tbody>
</table>
TPMT*3B ve TPMT*3C’yi tanımlamak için kullanılan primerler, amplifikasyon uzunluğu, kullanılan restrikşiyon enzimleri, bu enzimlerin kesim noktaları ve enzimle kesim sonucunda genotip tayinin nasıl yapılacağı **Tablo 3.5**’te özetlenmiştir.

3.3.6 DNA Dizi Analizi

DNA baz dizisinin belirlendiği bir yöntemdir. Bu amaçla Sanger’in **dideoksi terminasyon reaksiyonu** prensibine dayalı yöntemler kullanılmaktadır. DNA sentezi, dört çeşit deoksinnükleozit trifosfatla yapılmaktadır. Polimerizasyon işlemi sırasında, son bağlanan nükleotidin 3’-OH ucuna yeni bir nükleotid bağlanarak zincir uzamaktadır. Dideoksi terminasyon metodunda kullanılan sentetik oligonükleotidlerin yapısında yer alan deoksiribozun 3. karbonunda OH yerine H bulunmaktadır. Sentez sırasında yapıya dNTP eklemi zaman sentez devam etmekte ama zincirde bir dideoksinükleotid (ddNTP) eklenmesi durumunda zincir uzaması sonlanmaktadır. Bu nedenle zincir sonlandırma metodu (**dideoksi terminasyon reaksiyonu**) olarak da adlandırılır. Terminatörlere bir örnek olarak dTTP ve ddTTP’nin farkı **Şekil 3.5’te** gösterilmiştir. 86

![Şekil 3.5. Dizi analizinde kullanılan nükleotidlerden dTTP ve ddTTP.](image1)

Şekil 3.6. Dizi analizi ile tanımlama işlemi.
Geçmişte radyoaktif madde (35S) ile işaretleme işlemi yapılrken günümüzde ddNTP'lerin her biri farklı floresans maddelerle işaretlenmektedir (Şekil 3.6). Otomatik DNA dizi analizi cihazlarında kapiller kullanılarak kısa süre içinde elektroforesi işlemi yapılmaktadır. Bu cihazlarda elektrofores esnasında lazer okuyucu ile renkli floresans işaretli DNA fragmentları uzunluklarına göre ayrılmakta ve bilgisayar programı ile değerlendirilmektedir. 86

Aşağıda Beckman Coulter CEQ8000 ile yapılan bir DNA dizi analizi örneği (Şekil 3.7) verilmiştir. Cihazın alignment programı sayesinde referans gen ile karşılaştırma yapılarak olası mutasyon noktaları farklı işaretlemektedir.

Şekil 3.7 DNA dizi analizi sonucu.

3.3.6.1 Amplifikasyon

G460A mutasyonunu DNA dizi analizi ile doğrulamak için P460Fb ve P460Rb primerleri ile (Tablo 3.4) PCR yapıldı. Benzer şekilde, A719G mutasyonu için P719Fb ve P719Rb primerleri (Tablo 3.4) kullanıldı. Amplifikasyon için kullanılan PCR protokolü Tablo 3.2’de verilmiştir. PCR ürünler, %2’lik agaroz jelde 150 V’ta 30 dk yürütülerek amplifikasyon kontrolü yapıldı. Daha sonra, Agencourt AMPure Kit ile PCR ürünleri pürüfie edilerek dideoksi terminasyon reaksiyonu için hazırlandı.
3.3.6.2 PCR Ürünün Pürifikasyonu

1. 20 μL’lik PCR ürünü üzerine 36 μL Agencourt AMPure ilave edilir.
2. Agencourt AMPure ve PCR ürünü pipetle 10 defa karıştırılır:
 Bu adında 100 bç ve daha büyük olan PCR ürünleri manyetik boncuklara bağlanır.
 Pipetle karıştırdıktan sonra bu karışımın rengi homojen olmalıdır. PCR ürünün
 boncuklara bağlanması için bu karışım oda ısısında 3-5 dk bekletilir.
3. Boncukları solüsyondan ayırınak için 5-10 dk Agencourt SPRIPlate 96R manyetik plate
 üzerine yerleştirilir. Solüsyonun berrak olması beklenir.
5. 200 μL %70’lik alkol ilave edilir ve 30 sn oda ısısında bekletilir. Etanol pipetle çekilir.
 İki defa bu yıkama işlemi tekrar edilir. Son yıkama da etanol tümden uzaklaştırılır. Yıkama
 işlemi esnasında plate manyetik alan üzerinde bulunmaktadır.
7. Her bir kuyuya 40 μL dH₂O eklenir ve DNA suda çözünenek dideoksi terminasyon
 reaksiyonu için hazır olur.

3.3.6.3 Dideoksi Terminasyon Reaksiyonu

Reaksiyon GenomeLab Methods Development Kit, Dye Terminator Cycle
Sequencing (DTSC) kiti kullanılarak yapıldı. Reaksiyonunda premiks aşağıdaki gibi
hazırlanmıştı.

10X Sequencing Reaksiyon Tamponu	200 μL
dNTP Miks	100 μL
ddUTP Dye Terminator	200 μL
ddGTP Dye Terminator	100 μL
ddCTP Dye Terminator	200 μL
ddATP Dye Terminator	200 μL
Polimeraz enzimi	100 μL
Toplam	1100 μL

Bu premiks karışımı 90 μL’lik porsiyonlara ayrılarak -20°C’de saklanır. Reaksiyon
aşağıdaki gibi hazırlandı.
Premiks: 11.0 μL
Primer (10 pmol)*: 2.0 μL
Pürifiye PCR ürünü: 2.0 μL
dH2O: 6.0 μL
Toplam hacim: 20.0 μL

*G460A için TPMT460C Reverse primeri ve A719G için P719Fb primeri kullanıldı.

Terminasyon reaksiyonu termal cycler kullanılarak yapılır. PCR programı;

\[
\begin{align*}
90^\circ C & : 20 \text{ sn} \\
50^\circ C & : 20 \text{ sn} \\
60^\circ C & : 4 \text{ dk}
\end{align*}
\]

30 siklus olarak ayarlandı.

3.3.6.4 Terminasyon Reaksiyon Ürününün Purifikasyonu

Reaksiyonu bitmiş olan PCR ürününün purifikasyonu aşağıdaki protokoldeki gibi yapıldı.

1. 20 μL’lik sekans reaksiyon ürününe 20 μL Agencourt CleanSeq ilave edilir
2. Her örneğe %73’lük izopropanol eklenir ve 10 defa pipetle karıştırılır.
3. Bu karışım en az 10 dk oda ısısında ürünlerin manyetik boncuklara bağlanması için bekletilir.
4. Daha sonra örnekler Agencourt SPRPlate 96R manyetik alan üzerinde solüsyon berrak olana kadar (3-5 dk) bekletilir.
5. Süpernatant kısmi pipetle alınmaktadır.
6. Her bir örneğe %73’lük izopropanoldan 200 μL eklenir ve 3 dk oda ısısında bekletilir.
7. İzopropanol tümüyle pipetle çekilir ve atılır. Bu yıkama işlemi (6. basamak) bir kez daha tekrar edilir. Yıkama işleminde örnekler manyetik alan üzerinden çıkarılmaz
8. Örnekler manyetik alandan çıkarılır ve alkolün kuruması için 10-20 dk oda ısısında bekletilir.
9. Her bir örneğe 40 μL yükleme solüsyonu (Sample Loading Solution) eklenir. Örnekler CEQ8000 cihazında yürütülecek sonuçlar değerlendirildi.

TPMT geninin nükleotid dizilimi, intronlar, eksonlar ve eksonların kodladığı amino asitler Şekil 3.8’dede gösterilmiştir⁴¹.
EKSON I

Met Asp Gly Thr Arg Thr Ser Leu Asp Ile Glu Glu Tyr Ser Asp Thr Glu

Cd1
ATG GAT GGT ACA AGA ACT TCA CTT GAC ATT GAA GAG TAC TCG GAT ACT GAG

Val Gln Lys Asn Gln Val Leu Thr Leu Glu Glu Trp Gln Asp Lys Trp Val

Cd18
GTA CAG AAA AAC CAA GTA CTA ACT CTG GAA GAA TGG CAA GAC AAG TGG GTG

Asn Gly Lys Thr Ala Phe His Gln Glu Gly His Gln

Cd35
AAC GGC AAG ACT GCT TTT CAT CAG GAA CAA GGA CAT CA

INTRON I

agattgagaaat tgggacaatt ggcagaattt agaaggaaat taggagtaag tacaataatg
cctagctgtat gaagcctaca taaagacccaa gtagtattag tttttagtgc gcgtgctttag

gctcaacagg tgaaggtctct gtagctacaactacatctca tataaccttct ttcgagctatc
ttttatataa aatgtgcaaattt gataacactg atccttctctctc ctgcagttta gatcagatt

cacaataagc aacccccaaag tggaggtgttg gttgttgcag tggaggtgttg aatctctctta
tggtgcagct ggtgtgtgctgcccgagtgcacagtgcacgtgccctgcagttcactgcactgtactc
ttttctctct cttttctctct ctttctctct ctttctctct ctttctctct ctttctctct

- 55 -
EKSON II

Leu Leu Lys His Leu Asp Thr Phe Leu Lys Gly Lys Ser Gly Leu
Cd48 G CTA TTA AAG AAG CAT TTA GAT ACT TTC CTT AAA GGC AAG AGT GGA CTG
Arg Val Phe Phe Pro Leu Cys Gly Lys Ala Val Glu Met Lys Trp
Cd64 AGG GTA TTT TTT CCT CTT TGC GGA AAA GCG GTT GAG ATG AAA TG

INTRON II

gtatgagcag ataaacatta acagaattat cttgccttaa tgtgatattc tttgggtgat
ttaacagagt gtgatgtttaaatccct cttcaggaat acacagaataatcctttat
ctcattagtgc attggtatatattctt cattgcagga aaccaacagatcgtatggtc
acaggtatgac agttcttttctg gattgtagttt tggaatatttga aatatcagttt gtagacacag
gggaggaaac aaacagcctctcttttaca tttccttgagtcttgtatgttggttcagttt
attcgccttg taaggtagtttttaagttc atttttggtgatggttgcac
agagaaatttc aaaaagtatagcagctt ctctttcaattattca tattttgttttg gtagagttttt
cagcactcttc aataaatttcatctttt cgtctaaagtttgagttttaa tttgggttttgcacgacagtcc
ttatctgtaaacattgaa cccttttataaattataaa atgtatatatttgagtatatttacgactcatttgtaaataacatcatcatcatttttataatttatttttaatttttttttattt
EKSON IV

Ser Ser Ser Gly Asn Ile Ser Leu Tyr Cys Cys Ser Ile Phe Asp Leu

Cd123 AGT TCT TCG GGG AAC ATT TCA TTG TAC TGT TGC AGT ATT TTT GAT CTT

Cd139 CCC AG

INTRON IV

gtagggtggaa tactacatct gcacctttttaaa aaattttaaat gcttgccagg cagtgcaagcc
atgggagaaggtttcggctt cctcactttcttc ttctgctcttgtaa taacatccacb aaagcatatccttttttttttttt
atattttatatccttcta ctcttttgatgg ctttggtggttctt cactt
EKSON VI

Tyr Ala Asp Thr Met Phe Ser Leu Leu Gly Lys Lys Phe Gln Tyr Leu

Cd166
C TAT GCA GAT ACA ATG TTT TCC CTC CTG GGA AAG AAG TTT CAG TAT CTC

Leu Cys Val Leu Ser Tyr Asp Pro Thr Lys His Pro Gly

Cd182
CTG TGT GTT CTT TCT TAT GAT CCA ACT AAA CAT CCA G

İNTRON VI

gtaaagtgtg tgggtttttt tttttttcttt taccagttgc cttagtttctt gatataaatt
catagacatg gataagaatt attttctcct aatattatctc ataggaagca tactgcatat
atactagggag ataattacttc tgggattattc tctagtatttt cattatttta tacattcgac
atttgatagt gattttcttg tattcctttc ccattttgtt taccattcac aattcagact
agaagaagga gggagaatgg atagttctga tacagaagag aatactgtatc gttgtctttt
ctgtgacctga tccttttttaa tttctgaagt tttataaatct

İNTRON VII

gtaagtttgtg ggtttttttt gttttttttt taccagttgc cttagtttctt gatataaatt
catagacatg gataagaatt attttctcct aatattatctc ataggaagca tactgcatat
atactagggag ataattacttc tgggattattc tctagtatttt cattatttta tacattcgac
atttgatagt gattttcttg tattcctttc ccattttgtt taccattcac aattcagact
agaagaagga gggagaatgg atagttctga tacagaagag aatactgtatc gttgtctttt
ctgtgacctga tccttttttaa tttctgaagt tttataaatct

EKSON VII

Pro Pro Phe Tyr Val Pro His Ala Glu Ile Glu Arg Leu Phe Gly

Cd195
GT CCA CCA TTT TAT GTG ATA CCA CAT GCT GAA ATT GAA AGG TTT G

İNTRON VII

gtaaagtttgt ggacttattgc tgtaacatttttaa aacatttattgc ctttttgggcc
tggcgtctgt gctttctcct tttatctcct caatggcgat cagcctggag ctgttcaacc
ctgaggccag gaggttagcag cagcagcctg ccacatgagc acacagtttttagtggctttt

-61-
EKSON VIII

Lys Ile Cys Asn Ile Arg Cys Leu Glu Lys Val Asp Ala Phe Glu Glu

Cd210

GT AAA ATA TGC AAT ATA CGT TGT CTT GAG AAG GAT GAT TTT GAA GAA

Cd226

CGA CAT AAA AGT TGG GGA ATT GAC TGT CTT TTT GAA AAG TTA TAT CTA CTT

Cd243

ACA GAA AAG TAA

Thr Glu Lys Stp

Cd243

ACA GAA AAG TAA
atcgatgtat tctaatagat ttgtaaggct attaatggta agcaactcct tgctcacagtt
gatcctttgct tctctgagac ctgctccccag tcgatactgt gggcttccaga agccatgact
ccccacactct gctctgtatca cccggtagaat ggacacctaac cccgagctgg accaacaacaat
ttcctctccag agacttttaga ttttatttttt atgtagagac agggctctac ctgggtgccc
agcgtgatgt tgaacttgcgt tgtgagccct acacagctct cctgtctttg ccacccaaag
tgctaggatt acaggtatga gccaattgccc tgggctccttt ctaggctttt tggacttggg
aatagaaag caaccccccac tctactaaaa atacaaaaaaa attagccagg cgagtggggca
cgtgacctga atccccgctca tgttggaggg cagggcagga gatcactttgg tcccctaggag
gcgaggtttg cagtgagctg agaatctgcc actgcaagcc agcctgggca acagagcaag
actctgtctc aaaagaagaag aaaaaaaag aaaaaaaaga aaggaagtt gactgtgtaa
aggggaatct cgggctggtc ggggagccac attccagcact atggatctga
ggacacaaaagctcatactc agaaaagagat gagaacccaa gaggagccac cttggcctctg
ggcctctttt ctcctctcagtg gaagccagct gggaggagaa acctgtggtc
catggcattac ggtcctttccc gtcggcaggt ttgggcaagag aatcttaaat acaaatgaga
tataccttagg tattcggatca tttatgtaat atgtgtcttc actgggggaat actgacccct
ataaatctca agatggagga tataccaaat gtaaatatttt ttagagcaat taaaattttt
tcaggatgg ccag

Şekil 3.8. İnsan TPMT gen dizisi. 5' UTR ve 3'UTR gri renkle gösterilmiştir. Eksonların kodladığı amino asitler üzerine yazılmıştır."
Çukurova Üniversitesi Tip Fakültesi Dermatoloji Anabilim Dalı’nda pemfigus tanısı konmuş 64 hastanın tam kan örnekleri alınmıştır. Bu örneklerin DNA’ları izole edildikten sonra PCR-ARMS ve PCR-RFLP yöntemi ile TPMT*2, TPMT*3B ve TPMT*3C mutasyonları analiz edilmiştir.

Pemfigus tanısı konmuş bir hastada azatiopürine bağlı hematotoksitelye gelmiş ve bu bireyin ailesi TPMT mutan alleleri bakımından incelenmiştir. TPMT*2 mutasyonuna ARMS yöntemi ile bakılmıştır. TPMT*3B ve TPMT*3C ise RFLP ve multipleks PCR kullanılarak tanımlanmıştır. Bu hasta heterozigot TPMT*3A olarak tanımlanmıştır.

Bu hastanın aile bireylerinin TPMT alleleri incelenmiştir. Bu hastanın ve ailesinin TPMT*2, TPMT*3B ve TPMT*3C’nin PCR-ARMS yöntemiyle amlifikasyon sonucu Şekil 4.1, Şekil 4.2 ve Şekil 4.3’te gösterilmiştir. Şekil 4.1’de proband ve annesinin TPMT*3A olduğu gösterilmiştir, probadının babasında ise 4 mutant TPMT alleli tespit edilmiyor.
Şekil 4.2. TPMT*2’nin PCR-ARMS, TPMT*3B ve TPMT*3C’nin multipleks PCR-ARMS görüntüsü. 4. Probandın eşi, 5. probandın kardeş ve 6. Probandın büyük kız.

Şekil 4.3. TPMT*2’nin PCR-ARMS, TPMT*3B ve TPMT*3C’nin multipleks PCR-ARMS görüntüsü. 7. Probandın kızı ve 8. Probandın en küçûk kızı.
Probandın eşi, kardeşi ve büyük kızları mutant TPMT alleleri bakımından incelenmiş ve probandın büyük kızının anneden TPMT*3A allelini aldığı Şekil 4.2’de gösterilmiştir. Probandın eşi ve kardeşinde TPMT mutant alleli tespit edilmemiştir.

Şekil 4.3’te benzer şekilde TPMT*2’nin, TPMT*3B ve TPMT*3C’nin PCR-ARMS amplifikasyon sonucu gösterilmiştir. Probandın en küçük kızı TPMT*3A olarak belirlenmiştir, diğer kızında ise yaygın mutant TPMT allelleri tespit edilmemiştir.

Bu ailede 4 mutant TPMT allelinin PCR-ARMS incelenmesi sonucunda probandın annesi, proband ve iki kızında TPMT*3A aleli taşıdığı, probandın eşi, babası, kardeşi ve bir kızında ise TPMT*2, TPMT*3A, TPMT*3B ve TPMT*3C allelleri tespit edilmemiştir.

Bu ailenin TPMT*3B mutasyonunu sağlamak amacıyla proband, anne ve babası PCR-RFLP yöntemi amplifikasyonu yapıp, MwoI restriksiyon enzimi ile kesilmiştir. Şekil 4.4 proband ve annesinin G460A mutasyonunu taşıdığı gösterilmiştir. Probandın babasında ise TPMT*3B mutasyonunu taşımadığı gösterilmiştir.
Bu ailenin TPMT*3C mutasyonunu doğrulamak amacıyla PCR-RFLP yöntemi ile amplifikasyonu yapıp, AccI restriksiyon enzimi ile kesilmiştir. **Şekil 4.5**'te proband, annesi ve iki kızının A719G mutasyonunu taşıdığı doğrulamıştır. Probandın babası, eşi, kardeşi ve bir kızının ise TPMT*3C mutasyonu taşmadığını gösterilmiştir.

![Marker](image)

Bu tez çalışmasında TPMT geninin 5. ve 8. eksonun DNA dizi analizi yapıldı. TPMT*3A heterozigot olarak belirlenen bu aileden probandın G460A (**Şekil 4.6**) ve A719G (**Şekil 4.7**) DNA dizi analizi kromatogramu aşağıdaki şekillerde gösterilmiştir.
Şekil 4.6 Probandın G460A mutasyonun dizi analizi ile gösterilmesi (Reverse primer ile sekans yapılmıştır).

Şekil 4.7 Probandın A719G mutasyonun sekans ile gösterilmesi (Forward primer ile sekans yapılmıştır).
TPMT*3A taşıyan ailenin soyağacı Şekil 4.8'de gösterilmiştir.

Şekil 4.8: TPMT*3A alleleli taşıyan probandın (II-3) aile soyağacı.

Başka bir pemfigus hastasında ise TPMT*2 mutant alleli tespit edilmiştir. Bu hastanın TPMT*2 alleli PCR-ARMS yöntemi ile belirlenmiştir. TPMT*3B ve TPMT*3C allelleri ise PCR-RFLP yöntemi ile incelemiştir fakat mutasyon tespit edilmemiştir (Şekil 4.9).

<table>
<thead>
<tr>
<th>TPMT*2</th>
<th>TPMT*3B</th>
<th>TPMT*3C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>M</td>
<td>AK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AK</td>
</tr>
</tbody>
</table>

5. TARTIŞMA

Tiopürin S-metiltransferaz 6-merkaptopürin, 6-tioguanin ve azatiopürin gibi tiopürin ilaçlarını içeren aromatik ve heterosiklik bileşiklerin S-metilasyonunu katalizleyen sitoplazmik bir enzimdir. Enzim bir metil donörü olarak S-adenozilmetionin (SAM) kullanarak sülfür atomlarının metilasyonunu katalizlemektedir. Bugüne kadar bu enzim için doğal bir substrat bulunamamıştır.

İnsanlarda ilaç etkinliğini ve toksisitesini etkileyen farmakogenetik polimorfizmlerin en belirgin örneklerinden biri Tiopürin S-Metiltransferaz eksikliğidir. Tiopürinler antineoplastik ve immünosupresanlar olarak yaygın olarak kullanılmaktadır ama TPMT polimorfizmeleri ile kullanımını güçlendirmektedir. Eritrositlerdeki TPMT aktivitesi (diğer dokular ile korelasyon göstermekle) trimodal bir dağılım göstermektedir. Beyaz ırkın yaklaşık %89’u normal TPMT aktivitesine, %11’i orta aktiviteye (bir fonksiyonel allele için heterozigot) ve 300 kişi de 1 çok düşük veya hiç tespit edilememeyen TPMT aktivitesine sahiptir. Farklı popülasyonlarda yapılan birçok çalışmada TPMT enzim aktivitesi ve genotipi arasında >%98 ilişki olduğu gösterilmiştir. İnsanlarda TPMT polimorfizmelerinin moleküler temeli yaygın olarak 3 nonsinonim kodlayan tek nükleotid polimorfizmli ile
ilişkili olup, her biri proteini unstabil hale getirmekte ve ubikutinasyon ile degradasyonu artırmaktadır. Böylece homozigot eksikliği olan bireyler, TPMT protein düzeyi hemen tespit edilemeyecek düzey ile karakterizedir. Heterozigotlarda orta protein ve aktivite düzeyi, homozigot wild-tip bireyler ise yüksek protein düzeyi ve aktivitesi tespit edilmiştir.\(^2\)\(^-\)\(^3\),\(^6\)-\(^8\),\(^12\)-\(^14\),\(^17\),\(^18\),\(^20\),\(^23\),\(^26\)-\(^28\),\(^31\),\(^32\),\(^34\),\(^35\)

TPMT aktivitesi tiopürin ilaçların uygulanmasından sonra aktif tioguanin metabolitleri birikmektedir. Nadir olarak bulunan homozigot bireylerde tiopürinlerin standart dozu uygulandığıında, ölümcül olabildiği ağır miyelosupresyon gelişmekte\(^2\)\(^-\)\(^5\),\(^9\),\(^11\)-\(^13\),\(^18\),\(^20\),\(^22\),\(^23\),\(^27\),\(^28\),\(^32\). Bu toksisiteyi önlemek için dozun 10-kat azaltılması gerekmektedir. Heterozigotlarda orta protein ve aktivite düzeyi, homozigot wild-tip bireyler ise yüksek protein düzeyi ve aktivitesi tespit edilmiştir.\(^2\)\(^,\)\(^12\),\(^23\),\(^26\),\(^28\),\(^34\).

Düşük TPMT aktivitesi olan bireylerin çoğu TPMT*3A taşıyıcısıdır. Bu fonksiyonel olmayan alleli taşıyan Avrupa ve Amerika’ddaki Beyaz ırk popülasyonun yaklaşık %10’unda en sık görülen fonksiyonel olmayan alleldir.\(^6\),\(^11\),\(^23\). Asya’da fonksiyonel olmayan TPMT allellerin sıklığı oldukça düşüktür. Batı Asya’da, popülasyonun %2’si fonksiyonel olmayan allel taşıma olmasının, merkaptopürin takiben sıklığı orta derecede toksisite gösterebiliyor. Homozigot wild-tip (yüksek) aktiviteye sahip hastalar, tedavi yanıtıda bazı olmasının riskini (ör, persistence lösemi) artırabilir.\(^2\),\(^12\),\(^23\),\(^26\),\(^28\),\(^34\).

Ülkemizde Sayitoğlu ve ark. TPMT*2, *3A, 3B ve *3C varyantlarını belirlemek için akraba olmayan 148 kişileri araştırmada sonucunda; 6 kişide TPMT*2 heterozigot, 4 kişide TPMT*3C heterozigot ve 3 kişide TPMT*3A heterozigot olduğunu belirlemişlerdir. TPMT*3B varyantını ülkemizde tespit etmemişlerdir. Bu yaygın olarak tespit edilen mutasyonları taşıyan bireyler wild-tip olan TPMT*1 olarak tanımlanmıştır. Türk popülasyonunda TPMT*1 allele siklini %96.6 ve TPMT mutant allele taşıyıcı siklini %4.4 olarak rapor etmişlerdir.\(^44\).
Ülkemizde Boyun eğmez Tümér ve ark. 106 ALL’li hasta yaygın olarak görülen 4 TPMT (TPMT*2, *3A, *3B ve *3C) mutant allelini incelemiştir. TPMT*3C, TPMT*3A ve TPMT*3C/*3A çift heterozigot olan birer hasta tespit etmiştir. Geri kalan 103 ALL’li hasta TPMT*1 olarak tanımlanmıştır. ALL’li hastalarda toplam mutant TPMT allele sikliği %2.7 olarak belirlenmiştir. Ayrıca yaygın TPMT mutant allele sikliğini belirlemek amacıyla 212 kişide yaptıkları çalışmada 2 kişi TPMT*3C ve 2 kişi TPMT*3A heterozigot olarak belirlenmiştir. Bu çalışmada da toplam mutant TPMT allele sikliği %1.8 olarak belirlenmiştir.

Bu tez çalışmamızda pemfigus tanısı konmuş ve azatiopürin tedavisi alacak olan hastalarda yaygın olarak görülen 4 TPMT mutant allele (TPMT*2, *3A, *3B ve *3C) incelemiştir. Bu 4 mutant allele taşıyan hastalar TPMT*1 wild-tip allele olarak kabul edilmiştir. Pemfigus tanısı konan 64 hastadan biri TPMT*3A (G460A ve A719G) heterozigot olarak (Şekil 4.1-6) tespit edilmiştir. Başka bir hasta ise TPMT*2 (G238C) heterozigot olarak (Şekil 4.7) belirlenmiştir.

Bu çalışmada pemfigus tanısı konan başka bir hasta TPMT*2 (G238C) mutasyonunu heterozigot olarak taşıdığı gösterilmiştir (Şekil 4.9). Bu hastanın diğer mutant allele’lerden TPMT*3B ve TPMT*3C’yi taşımadığı belirlenmiştir.
6. SONUÇ

Tiopürinlerin tedavide kullanılması durumunda TPMT genotip/fenotipinin belirlenmesinin çok önemli olduğu yapılan birçok çalışmada ortaya konmuştur. Özellikle enzim aktivitesi çok düşük veya hiç olmayan bireylerde ağır hematotoksiste gelişmesinden dolayı bu bireylerin tanınılması oldukça önemlidir. Bu nedenle bu ilaçlar verilmeden önce TPMT polimorfizmlerinin tüm hasta grubunda tarişarak bu ağır komplikasyonlardan kaçınılabılır. PCR’da dayalı yöntemlerle yaygın mutant allelerin belirlenmesi ve bunun yanında enzim aktivitesinin ölçülmesi gerekmektedir.

Bu çalışmada yaygın 4 mutant allele (TPMT*2, TPMT*3A, TPMT*3B ve TPMT*3C) PCR-ARMS, PCR-RFLP yöntemleri ile analiz edildi. Pemfigus tanısı konmuş 64 hastadan, biri TPMT*3A ve diğeri TPMT*2 mutant allelini heterozigot olarak taşıdığı tespit edildi. TPMT*3A allelini doğrulamak amacıyla DNA dizi analizi yapıldı. Yaygın mutant alleleri multipleks PCR-ARMS yöntemi ile tanımlanmak RFLP’ye göre daha hızlı olmaktadır.
KAYNAKLAR

37. Homo sapiens: Reaction catalyzed by thiopurine S-methyltransferase (2.1.1.67).

41. Thiopurine S-methyltransferase (EC 2.1.1.67). Transcript: TPMT-001

7. ÖZGEÇMİŞ